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Abstract

This investigation is undertaken to explore the impact of thermal radiation on the

development of Magnetohydrodynamic with stagnation point and inclined mag-

netic field with Joule heating, laminar, incompressible two dimensional steady flow

through a stretching surface. A mathematical model that resembles the physical

flow problem has been developed. Impact of stretching ratio parameter, inclined

magnetic field with Joule heating and thermal radiation have been incorporated.

Meanwhile, a system of non-linear ordinary differential equations are obtained

by using appropriate similarity transformation on the governing partial differen-

tial equations. The resulting system of ordinary differential equations is solved

numerically by utilizing a shooting technique coupled with Range Kutta fourth

order method, implemented in the computational software MATLAB. Influence of

different physical parameters on velocity, temperature and concentration profiles

are analyzed through graphs. Numerical values of skin fraction coefficient, Nusselt

number, and Sherwood number are also computed and discussed.
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Chapter 1

Introduction and Literature

Survey

This chapter provides introduction of computational fluid dynamics related to var-

ious respective aspects. A review on the fluid flow and the heat distribution process

shall be done in accordance with the stretching surface. A brief introduction and

significance of boundary layer, magnetohydrodynamics, thermal radiation, Joule

heating, stagnation point and inclined magnetic field flow are described.

1.1 Computational Fluid Dynamics (CFD)

Computational fluid dynamics, now known as CFD, is described as a collection of

methodologies that allow the computer to provide us with a numerical simulation

of fluid flows [1]. The object of a flow simulation is to figure out how the flow in a

given system behaves under a given set of inlet and outlet conditions. These states

are commonly referred to as boundary conditions [2]. The cornerstone of CFD is

the fundamental governing equations of fluid dynamics - energy equation (energy

is conserved), momentum equation (F = ma) and the continuity equation (mass

is conserved) [3]. In our daily life, examples of fluid flow are apparent in different

1
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applications like meteorology, air conditioning, aerodynamic design, engine com-

bustion, industrial process, also blood flow in human body and so on. Archimedes

was a Greek mathematician, who first inspected the fluid statics and buoyancy,

then composed the famous law known as the Archimedes principle. Computational

fluid dynamics has been a field of significant research and development since the

early 20th century. Leonardo da Vinci (1452 - 1519) introduced the equation of

mass for one dimensional steady-state flow. Isaac Newton (1642 -1727) stated the

laws of motion and the law of viscosity. Leonhard Euler (1707-1783) postulated the

integral and differential form of equations of motion, known as Bernoulli equation.

Navier (1785 - 1836) and Stokes (1819 - 1903) included viscous term in the equation

of motion. Ludwig Prandtl (1875 - 1953) noted that with limited viscosity fluid

flows, such as water flows and air flows can be divided into thin boundary layers

close to the solid surfaces. Fluid dynamics has a wide range of applications,

including the calculation of forces on aircraft [4], predicting weather patterns [5],

magnetic cell separation [6] and in various metallurgical procedures [7].

1.2 Magnetohydrodynamics (MHD)

The magnetohydrodynamics is the branch of mechanics which deals with magnetic

behavior and properties of electrically conducting fluid. When a conducting fluid

moves through a magnetic field, it induces current, as a result Lorentz force is

produced which changes the movement of the fluid. The MHD factor has a fun-

damental role in controlling the cooling rate and for achieving the desired quality

of the product. It is of concern that applications of MHD flows occur in a variety

of industrial fields, such as electrical propulsion for space travel, crystal develop-

ment in liquids, cooling of nuclear reactors, etc. To the author’s understanding,

Pavlov [8] was first who study the MHD flow over a stretched wall. Furthermore,

addressed the analysis in the presence of a uniform magnetic field and obtained an

accurate analytical approach. Kabir et al. [9] investigated the impact of viscous

dissipation on MHD natural convectional flow with a vertical wavy surface. They



Introduction and Literature Survey 3

concluded that the temperature and velocity profiles enlarge by mounting the vari-

ation of Eckert number. Hayat et al. [10] explored the impact of chemical reaction

in MHD flow through a nonlinear over stretching surface. Moreover, highlights

the flow analysis is considered under the action of applied magnetic field.

1.3 Stagnation Point

The stagnation point is defined as a point in the flow field where the local velocity

of the fluid is zero and exists on the surface of the objects in the flow field where the

fluid is brought to rest by the object. The stagnation point flow to the stretching

sheet is very useful and significant from a functional point of view. There are

different mathematical methods used to solve nonlinear differential equations [11].

Initially, Hiemenz [12] suggested the idea of a stagnation point flow. According to

his theory, the stagnation point flow describes the motion of fluid particles adjacent

to the stagnation area of a solid surface for both fixed and moving bodies. Grosan

et al. [13] worked on the MHD oblique stagnation point flow. Markin and Pop [14]

reported the effect of exothermic surface reaction is considered in the presence of

a stagnation point flow on a stretching/shrinking surface. Weidman [15] studied

planar stagnation point flow normally impinging a rotating plate. Mahapatra

and Gupta [16] are currently analysing Homann stagnation point flow for non-

axisymmetric viscoelastic liquid numerically. Lok et al. [17] recently investigated

electrically conductive and viscous fluid with the presence of a uniform magnetic

field over a stretching/shrinking surface in the sense of a non-orthogonal stagnation

point flow.

1.4 Inclined Magnetic Field

Inclined magnetic field is basically the non-zero inclination of magnetic field. Incli-

nation is the angle between the direction of vector and another preferred direction

in the problem [18]. Further, Hayat et al. [19] deliberated with the impact of
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inclined magnetic field on peristaltic flow of an incompressible Williamson fluid in

an inclined channel with heat and mass transfer. It was observed that the velocity

profile enhances for increase in inclined magnetic field. Sandeep and Sugunamma

[20] scrutinized the influences of radiation and inclined magnetic field on free con-

vective flow of viscous dissipative fluid over a vertical sheet via porous medium

in existence of heat source. It was found that declination of inclination angle di-

minish the magnetic field effect. As a result at ω = π/6, the fluid velocity and

temperature were increased slightly.

1.5 Joule Heating

The movement of electrical current produces heat that is known as the Joule heat

phenomenon. Joule heating is often known as Ohmic heating. Joule heating has

a regular set of built-up and technological advancement, such as electrical fires,

electrical heaters, radiant light bulbs, electrical fuses, and electronic fag. Some

studies are provided here for the principle of Joule heating. Rahman [21] discussed

the micropolar fluids of convective flows from radiative isothermal porous surfaces

with Joule heating and viscous dissipation also considered the cooling process.

Khan et al. [22] analyzed the features of heterogeneous and homogeneous reactions

in magneto Casson liquid flow induced by slandering surface. Dissipation and Joule

heating aspects were also accounted.

1.6 Thermal Radiation

Thermal radiation is described as the amount of energy emitted depend on the

temperature of the surface. Recently, thermal radiation has a significant effect on

the thermal transport properties in the dynamics and manufacturing area, inter-

stellar science, high temperature advances. Thermal radiation characterises the

thermal heat forming the surface and diffusing in both directions. In addition, it

has an important role to play in improving the thermal transport characteristics of
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polymer dispensing industry. Ilbas [23] addressed the impact of thermal radiation

in the presence combustion modeling that will be very useful in this pattern and

numerous performances to boost radiation have been sought. Waqas et al. [24]

discussed the effect of radiation and MHD in the updated nanofluid relationship

numerically and explored that thermal radiation characterizes the heat transfer

process.

Many aspects in this study are important to explore for a thorough understanding

of computational fluid dynamics. Some of the characteristics related to fluid flow

phenomena are encountered from literature with the references in this Chapter.

1.7 Thesis Contribution

In this dissertation, the main objective is to reformulate the review work by MHD

inclined magnetic field with Joule heating and thermal radiation with stagnation

point flow. In this research, PDEs are transformed into dimensionless ODEs by

means of an similarity transformation. The numerical values are determined by

using the shooting technique with Range Kutta fourth order. The impact of

distinct physical parameters on flow of fluid are explained via tables, and graph.

1.8 Thesis Layout

A brief description of contents of the thesis is presented as follows:

The fundamentals of fluid dynamics are explained in Chapter 2. A brief review has

been outlined on the basic definitions, fundamental laws and governing equations.

The shooting technique and dimensionless physical quantities are classified. A

comprehensive review of the numerical analysis of Shawky et al. [25] research

paper is presented. By using the shooting process, as similar to the review work

in Chapter 3 is repeated. The non linear combined system of PDEs has been

converted into an ODEs system. The impacts of various parameters are shown

and discussed graphically.
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The effect of the inclined magnetic field, Joule heating, stretching ratio and ther-

mal radiation of MHD including stagnation point flow is updated in Chapter 4.

The system of ODEs is derived by appropriate similarity transformation discussed

numerically. Behavior of physical parameters has been presented in tabular form

and through graphs. In this thesis, we also computed the numerical values of local

Nusselt number, skin-friction coefficient and Sherwood number.

The summary of the whole study is presented with concluding remarks and forth-

coming implementation in Chapter 5.

All the references used in the research work are listed in Bibliography.



Chapter 2

Fundamental Concepts and Basic

Equations of Flow

A few simple concepts, governing laws and dimensional quantities are presented

in this Chapter. It also addresses dimensional quantities that have been used in

subsequent chapters. In addition, a brief explanation for the shooting system used

to find the numerical results was conducted.

2.1 Important Definitions

2.1.1 Magnetohydrodynamics

“Magnetohydrodynamics is focused on the hydrodynamics of electrically conduc-

tive fluids on plasma and liquid metals, especially” [26].

2.1.2 Fluid Mechanics

“Fluid mechanics is the branch of science which deals with the behavior of the

fluids (liquids or gases) at rest as well as in motion. Thus this branch of science

deals with the static, kinematics and dynamic aspects of fluids” [27].

7
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2.1.3 Fluid Statics

“The study fluids at rest is called fluid statics” [27].

2.1.4 Fluid Kinematics and Fluid Dynamics

“The study of the fluids in motion, where pressure forces are not considered, is

called fluid kinematics and if the pressure forces are also considered for this fluids

in motion, that branch of science is called fluid dynamics” [27].

2.1.5 Fluid

“A substance exists in three primary phases. Solid, Liquid and Gas (at very high

temperatures, it also exists as plasma). A substance in the liquid or gas phase is

referred to as a fluid. Distinction between a solid and fluid is made on the basis

of substances ability to resist an applied shear or (tangential) stress that tends to

change its shape” [28].

2.2 Physical Properties of the Fluid

There are certain physical property of fluid which is described below

2.2.1 Specific Volume

“Specific volume of a fluid occupied by a unit mass or volume per unit mass of a

fluid is called specific volume. Mathematically, it is expressed as

Specific volume =
Volume of fluid

Mass of fluid
=

1
Mass of fluid

Volume of fluid

=
1

ρ

Thus specific volume is the reciprocal of mass density. It is expressed as m3/kg.

It is commonly applied to gases” [27].
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2.2.2 Specific Weight

“The specific weight of a fluid, denoted by γ (lowercase Greek gamma), is its

weight per unit volume” [29].

2.2.3 Temperature

“Temperature T is a measure of the internal energy level of a fluid. It may vary

considerably during high-speed flow of a gas” [29].

2.2.4 Pressure

“Pressure is the (compression) stress at a point in a static fluid. Next to velocity,

the pressure p is the most dynamic variable in fluid mechanics. Differences or

gradients in pressure often drive a fluid flow, especially in ducts. In low-speed

flows, the actual magnitude of the pressure is often not important, unless it drops

so low as to cause vapor bubbles to form in a liquid” [29].

2.2.5 Density

“The density of a fluid, denoted by ρ (lowercase Greek rho), is its mass per unit

volume . Density is highly variable in gases and increases nearly proportionally to

the pressure level” [29].

2.2.6 Viscosity

“The most important of these is viscosity, which relates the local stresses in a

moving fluid to the strain rate of the fluid element. When a fluid is sheared,

it begins to move at a strain rate inversely proportional to a property called its

coefficient of viscosity µ” [29].
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2.2.7 Kinematic Viscosity

“The second form of Re illustrates that the ratio of µ to ρ has its own name, the

kinematic viscosity :

ν =
µ

ρ

It is called kinematic because the mass units cancel, leaving only the dimensions

L2/T” [29].

2.2.8 Newton Law of Viscosity

“It states that the shear stress (τ) on a fluid element layer is directly proportional

to the rate of shear strain. The constant of proportionality is called the coefficient

of viscosity. Mathematically, it is expressed as

τxy = µ
du

dy
.

Fluids which obey the above relation are known as Newtonian fluids and the fluids

which do not obey the above relation are called Non-Newtonian fluids” [27].

2.3 Types of Fluid Flow

2.3.1 Steady and Unsteady Flow

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow do not change with respect to time, the flow is said

to be steady flow, mathematically, we have

(
∂v

∂t

)
(x0,y0,z0)

= 0,

(
∂p

∂t

)
(x0,y0,z0)

= 0,

(
∂ρ

∂t

)
(x0,y0,z0)

= 0, (2.1)

where (x0, y0, z0) is a fixed point in fluid field. Unsteady flow is that type at any

in which the velocity, pressure or density at a point changes with respect to time.
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Thus, mathematically, for unsteady flow

(
∂v

∂t

)
(x0,y0,z0)

6= 0,

(
∂ρ

∂t

)
(x0,y0,z0)

6= 0 etc” [27]. (2.2)

2.3.2 Uniform and Non-uniform Flow

“Uniform flow is defined as that type of flow in which the velocity at any given

time does not change with respect to space (i.e., length of direction of the flow).

Mathematically, for uniform flow

(
∂v

∂s

)
t = constant

= 0,

where ∂v = Change of velocity

∂s = Length of flow in the direction s. Non-uniform flow is that type of flow

in which the velocity at any given time changes with respect to space. Thus,

mathematically, for non-uniform flow

(
∂v

∂s

)
t = constant

6= 0” [27].

2.3.3 Compressible and Incompressible Flows

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid.

Thus, mathematically, for compressible flow

ρ 6= constant

Incompressible flow is that type of flow in which the density is constant for the fluid

flow. Liquids are generally incompressible while gases are compressible. Mathe-

matically, for incompressible flow

ρ = constant” [27].
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2.3.4 Laminar and Turbulent Flow

“Laminar flow is defined as that type of flow in which the fluid particles move

along well-defined paths or stream line and all the stream-lines are straight and

parallel. Thus the particles move in laminas or layers gliding smoothly over the

adjacent layer. This type of flow is also called stream-line flow or viscous flow.

Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way. Due to the movement of fluid particles in a zig-zag way, the eddies formation

takes place which are responsible for high energy loss” [27].

2.3.5 Rotational and Irrotational Flows

“Rotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, also rotate about their own axis. And if the fluid particle

while flowing along stream-lines, do not rotate about their own axis then that

type of flow is called irrotational flow” [27].

2.4 Classification of Fluids

2.4.1 Types of Fluid

“The fluids may be classified into the following five types:

1. Ideal fluid,

2. Real fluid,

3. Newtonian fluid,

4. Non-Newtonian fluid, and

5. Ideal Plastic Fluid” [27].



Fundamental Concepts and Basic Equations of Flow 13

Figure 2.1: Types of fluids.

2.4.2 Ideal Fluid

“A fluid which is incompressible and is having no viscosity, is known an ideal fluid

. Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity” [27].

2.4.3 Real Fluid

“A fluid, which possesses viscosity, is known as real fluid. All the fluids, in actual

practice, are real fluids” [27].

2.4.4 Ideal plastic fluid

“A fluid, in which shear stress is more than the yield value and shear stress is

proportional to the rate of shear strain (or velocity gradient), is known as ideal

plastic fluid” [27].

2.4.5 Newtonian Fluid

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid” [27].
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2.4.6 Non-Newtonian Fluid

“A real fluid, in which the shear stress is not proportional to the rate of shear

strain (or velocity gradient), is known as a Non-Newtonian fluid” [27].

2.5 Modes of Heat Transfer and Related Prop-

erties

2.5.1 Heat Transfer

“Heat transfer is that section of engineering science that studies the energy trans-

port between material bodies due to a temperature difference” [30].

2.5.2 Modes of Heat Transfer

“There are three modes of heat transfer namely conduction, convection and radi-

ation.

1. Conduction

2. Convection

3. Radiation” [30].

2.5.3 Conduction

“The conduction mode of heat transfer occurs either because of an exchange of

energy from one molecule to another, without the actual motion of the molecules,

or because of the motion of the free electrons of they are present. Therefore, this

form of heat transport depends heavily on the properties of the medium and takes

place in solids, liquids and gases if a difference in temperature exists” [30].
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2.5.4 Convection

“Molecules present in liquids and gases have freedom of motion, and by moving

from hot to cold region, they carry energy with them. The transfer of heat from

one region to another, due to such macroscopic motion in a liquid and gas, added

to the energy transfer by conduction within the fluid, is called heat transfer by

convection” [30].

2.5.5 Mixed Convection

“A mixed convection state is one in which both natural and forced convection

are present. Convection heat transfer also occurs in boiling and condensation

processes” [30].

2.5.6 Natural Convection

“When fluid motion occurs because of a density variation caused by temperature

differences, the situation is said to be a free, or natural, convection” [30].

2.5.7 Forced Convection

“When fluid motion is caused by external force, such as pumping or blowing, the

state is defined as being one of forced convection” [30].

2.5.8 Radiation

“All bodies emit thermal radiation at all temperature. This is the only mode

in which both does not require a material medium for heat transfer to occur.

The nature of thermal radiation is such that a propagation of energy, carried

by electromagnetic waves, is emitted from the surface of the body. When these
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electromagnetic waves strike other body surface, a part is reflected, a part is

transmitted and the remaining part absorbed” [30].

2.6 Some Main Definition

2.6.1 Stream Lines and Stream Function

“The lines with constant stream function values, are referred to as streamlines.

The stream function is defined by the following relationships:

u2 =
∂ψ

∂x2

u1 =
∂ψ

∂x1

where ψ is the stream function. If we differentiate the first relation with respect

to x2 and the second with respect to x1 and then sum, we get the differential

equation for the stream function as

∂2ψ

∂x2
2

+
∂2ψ

∂x2
1

=
∂u1

∂x1

− ∂u2

∂x2

” [30].

2.6.2 Isothermal Process

“If the change in density occurs at constant temperature, then the process is called

isothermal and relationship between pressure (p) and density (ρ) is given by p
ρ

=

constant” [27].

2.6.3 Adiabatic Process

“If the change in density occurs with no heat exchange to and from the gas, the

process is called adiabatic. And if no heat is generated within the gas due to

friction, the relationship between pressure and density is given by p
ρk

= constant
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where k =Ratio of the specific heat of a gas at constant pressure and constant

volume” [27].

2.6.4 Stagnation

“For high-speed flows, such as those encountered in jet engines, the potential

energy of the fluid is still negligible, but the kinetic energy is not. In such cases,

it is convenient to combine the enthalpy and the kinetic energy of the fluid into a

single term called stagnation (or total) enthalpy h0, defined per unit mass

h0 = h+
V 2

2

When the potential energy of the fluid is negligible, the stagnation enthalpy rep-

resents the total energy of a flowing fluid stream per unit mass. Thus it simplifies

the thermodynamic analysis of high-speed flows” [28].

2.7 Boundary Layer

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the

relative velocity between the fluid and the solid to become almost exactly zero.

For a stationary surface, therefore, the fluid velocity in the region near the wall

must reduce to zero. This is called no slip condition. We see this effect in nature

when a dust cloud driven by the wind moves along the ground. Not all the dust

particles are moving at the same speed; close to the ground they move more slowly

than further away. If we were to look in the region very close to the ground we

would see that the dust particles there are almost stationary, no matter how strong

the wind. Right at the ground, the dust particles do not move at all, indicating

that the air has zero velocity at this point.” [31].
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2.8 Law of Conservation and Fundamental Equa-

tions of Flow

2.8.1 Conservation of Mass

“The principle of conservation of mass can be stated as the time rate of change of

mass is fixed volume is equal to the net rate of flow of mass across the surface. The

mathematical statement of the principal result in the following equation, known

as the continuity of (mass) equation

∂ρ

∂t
+∇.(ρ v) = 0. (2.3)

where ρ is the density (kg/m3) of the medium, v the velocity vector (m/s), and

∇ is the nabla or del operator. The continuity equation (2.3) is in conservation

(or divergence) form since it can be derived directly from an integral statement of

mass conservation. By introducing the material derivative or Eulerian derivative

operator D
DT

D

Dt
=

∂

∂t
+ v.∇, (2.4)

the continuity equation (2.3) can be expressed in the alternative, non- conservation

(or advective) form

∂ρ

∂t
+ v.∇ρ+ ρ∇.v =

Dρ

DT
+ ρ∇.v, (2.5)

For steady-state conditions, the continuity equation becomes

∇.(ρv) = 0 (2.6)

when the density changes following a fluid particle are negligible, the continum is

termed incompressible and we have Dρ
Dt

= 0. The continuity equation (2.5) then

becomes

∇.v = 0 (2.7)
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which is often referred to as the incompressibility condition or incompressibility

constraint” [32].

2.8.2 Conservation of Momentum

“The principle of conservation of linear momentum equation states that the time

rate of change of linear momentum of a given set of particles is equal to the vector

sum of all the external forces acting on the particles of the set, provided Newton’s

Third Law of action and reaction governs the internal forces. Newton’s Second

Law can be written as:

∂ρv

∂t
+∇.(ρ⊗ v) = ∇.σ + ρf. (2.8)

where ⊗ is the tensor (or dyadic) product of two vectors, σ is the cauchy stress ten-

sor (N/m2) and f is the body force vector, measured per unit mass and normally

taken to be the gravity vector. Equation (2.8) describe the motion of a continuous

medium, and in fluid mechanics they are also known as Navier equations.

The form of the momentum equation shown in (2.8) is the conservation (diver-

gence) form that is most often utilized for compressible flows. This equation may

be simplified to a form more commonly used with incompressible flows. Expanding

the first two derivatives and collecting terms

ρ

(
∂v

∂t
+ v∇.v

)
+ vρ

(
∂ρ

∂T
+∇.ρv

)
= ∇.σ + ρf (2.9)

The second term in parentheses is the continuity equation (2.3) and neglecting

this term allows (2.9) to reduce to the non-conservation (advective) form

ρ
Dv

Dt
= ∇.σ + ρf (2.10)

where the material derivative (2.4) has been employed.

The principle of conservation of angular momentum can be stated as the time rate

of change of the total moment of a given set of particles is equal to the vector
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sum of the moments of the external forces acting on the system. In the absence

of distributed couples, the principle leads to the symmetry of the stress tensor:

σ = (σ)T (2.11)

where the superscript T denotes the transpose of the enclosed quantity” [32].

2.8.3 Conservation of Energy

“The law of conservation of energy is equal to the sum of the rate of work done by

applied forces and the change of heat content per unit time. In the general case,

the First Law of Thermodynamics can be expressed in conservation form as

∂ρet

∂t
+∇.ρvet = −∇.q +∇.(σ.v) +Q+ ρf.v (2.12)

where et = e + 1/2v.v is the total energy (J/m3), e is the internal energy, q is

the heat flux vector (W/m2) and Q is the internal heat generation (W/m3). The

total energy equation (2.8.3) is useful for high speed compressible flows where the

kinetic energy is significant. For incompressible flows, an internal energy equation

is more appropriate and can be derived (2.8.3) from with use of the momentum

equation (2.8). Taking the dot product of the velocity vector with the momentum

equation produces an equation for the kinetic energy; this equation is subtracted

from the total energy equation to produce the conservation (divergence) form of

the internal energy equation

∂ρe

∂t
+∇.ρve = −∇.q +Q+ Φ (2.13)

where Φ is a dissipation function that is defined by

Φ = σ : ∇v (2.14)

In Eq. (2.14) ∇v is the velocity gradient tensor which will be defined more com-

pletely in the following sections.

The thermal energy equation (2.13) can be simplified further by expanding the



Fundamental Concepts and Basic Equations of Flow 21

derivatives on the left-hand side of the equation and using the continuity equa-

tion. The resulting equation is the non-conservative (advective) form of the energy

equation

ρ
De

Dt
= −∇.q +Q+ Φ (2.15)

which is the standard form used for incompressible flows” [32].

2.9 Dimensionless Quantities

According to Josef Kunes some dimensionless quantities of fluid mechanics are

given as

2.9.1 Prandtl Number

“This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. It characterizes the physical properties of a fluid with convec-

tive and diffusive heat transfers” [26].

2.9.2 Nusselt Number

“It expresses the ratio of the total heat transfer in a system to the heat transfer

by conduction. In characterizes the heat transfer by convection between a fluid

and the environment close to it or, alternatively, the connection between the heat

transfer intensity and the temperature field in a flow boundary layer” [26].

2.9.3 Dufour Number

“It characterizes the ratio of the diffuse heat and mass transfers, in a binary mix-

ture of gases under isotropic conditions, to the enthalpy of the unit mixture mass,

provided the linear diffusion rate equals that of conduction. Thermodiffusion” [26].
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2.9.4 Schmidt Number

“This number expresses the ratio of the kinematic viscosity, or momentum trans-

fer by internal friction, to the molecular diffusivity. It characterizes the relation

between the material and momentum transfers in mass transfer” [26].

2.9.5 Sherwood Number

“It expresses the ratio of the heat transfer to the molecular diffusion. It charac-

terizes the mass transfer intensity at the interface of phases” [26].

2.10 Solution Methodology

We have used shooting technique to deal with the nonlinear ordinary differential

equations by using MATLAB software.

2.10.1 Shooting Method with RK4 Scheme

“In a shooting method, the missing (unspecified) initial condition at the initial

point of the interval is assumed, and the differential equation is then integrated

numerically as an initial value problem to the terminal point. The accuracy of

the assumed missing initial condition is then checked by comparing the calculated

value of the dependent variable at the terminal point with its given value there. If

a difference exists, another value of the missing initial condition must be assumed

and the process is repeated. This process is continued until the agreement between

the calculated and the given condition at the terminal point is within the specified

degree of accuracy. For this type of iterative approach, one naturally inquires

whether or not there is systematic way of finding each succeeding (assumed) value

of the missing initial condition.
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2.10.2 Newton’s Method

In this method, the differential equation is kept in its nonlinear form and the

missing slope is found systematically by Newton’s method. This method provides

quadratic convergence of the iteration and is far better than the usual cut-and-try

methods. Consider the second-order differential equation

z′′(x) = f (x, z, z′) (2.16)

subject to the boundary conditions

z(0) = 0, z(l) = W. (2.17)

By denoting z by z1 and z′1 by z2, Eq. (2.16) can be written as the following

system of first order equations.

z′1 = z2, z1 = 0,

z′2 = f(x, z1, z2), z1(l) = W.

 (2.18)

We denote the missing initial slope z2(0) by s, to have

z′1 = z2, z1(0) = 0,

z′2 = f(x, z1, z2), z2(0) = s.

 (2.19)

The problem is to find s such that the solution of the IVP Eq. (2.19) satisfies the

boundary condition z(l) = W . In other words, if the solutions of the initial value

problem are denoted by z1(x, s) and z2(x, s), one searches for the value of s such

that

z1(l, s)−W = φ(s) = 0 (2.20)

For the Newton’s method, the iteration formula for s is given by

s(n+1) = s(n) − φ(s(n))
dφ(s(n))

ds

(2.21)
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or

s(n+1) = s(n) − z1(l, sn)−W
∂z1(l,sn)

∂s

(2.22)

To find the derivative of z1 with respect to s, differentiate (2.19) with respect to

s. For simplification, use the following notations,

dz1

ds
= z3,

dz2

ds
= z4 (2.23)

This process results in the following IVP.

z′3 = z4, z3(0) = 0,

z′4 =
∂f

∂z1

z3 +
∂f

∂z2

z4, z4(0) = 1.

 (2.24)

The solution of Eq. (2.24), the value of z3 at l can be computed. This value is

actually the derivative of z1 with respect of s computed at l. This value is actually

the derivative of z1 with respect of s computed at l. Setting the value of z3(l, s)

in Eq. (2.22), the modified value of s can be achieved. This new value of s is used

to solve the Eq. (2.19) and the process is repeated until the value of s is within a

described degree of accuracy” [33].



Chapter 3

Numerical Analysis of MHD

Williamson Nanofluid Flow

Induced by Stretching Surface

3.1 Introduction

In this chapter, we are interested to investigate the magnetohydrodynamics (MHD)

Williamson nanofluid flow with heat and mass transfer in a boundary layer through

porous medium over a stretching sheet placed horizontally. Using the appropriate

similarity transformation the governing PDEs are converted into ODEs and shoot-

ing technique has been used to obtain the numerical results. The effects of different

physical parameters on concentration, velocity and temperature of nanofluid flow

have been presented graphically and discussed in detail. This chapter provides the

review study of Shawky et al. [25].

3.2 Problem Formulation

We consider the incompressible two-dimensional steady flow of Williamson viscous

dissipative nanofluid through a stretching sheet using the Cartesian coordinates

25
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(x, y) depicted in Figure 3.1. Along x-axis sheet is stretched with a Bx velocity,

where B > 0 indicates the stretching parameter. Note that Uw, Tw and Cw, are

the fluid velocity, temperature and nanoparticle concentration on the surface(wall),

respectively. The Williamson fluid model is [34, 35]

S = −pI + τ, (3.1)

τ =

[
µ∞ +

(µ0 − µ∞)

1− Γγ̇

]
A1, (3.2)

where S the Cauchy stress tensor, while τ is extra stress tensor, p indicates the

pressure, I represents the identity tensor, µ0 shows at zero shear rate limiting

viscosity and µ∞ known as at infinite shear rate limiting viscosity, λ > 0 expresses

the time constant, A1 represents the first Rivlin Erickson tensor and γ̇ interpreted

as follows:

γ̇ =

√
1

2
π,

π = trace(A2
1), (3.3)

γ̇ =

[(
∂u

∂x

)2

+
1

2

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂v

∂y

)2 ] 1
2

, (3.4)

where π denotes the second invariant strain tensor. Here only evaluated the case

for which µ∞ = 0 and λ γ̇ < 1. Thus Eq. (3.2) can be written as

τ =

[
µ0

1− Γγ̇

]
A1. (3.5)

By manipulating Binomial expansion then

τ = µ0[1 + Γγ̇]A1, (3.6)

and the components of the extra stressed tensor are :

τxx = 2µ0[1 + Γγ̇]
∂u

∂x
, (3.7)

τxy = τyx = µ0[1 + Γγ̇]

(
∂u

∂y
+
∂v

∂x

)
, (3.8)
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Figure 3.1: Schematic diagram of the physical problem.

τyy = 2µ0[1 + Γγ̇]
∂v

∂y
, (3.9)

τxz = τyz = τzx = τzy = τzz = 0. (3.10)

3.2.1 The Governing Equations

Under the aforementioned assumptions the boundary layer equations are

• Continuity Equation:
∂u

∂x
+
∂v

∂y
= 0. (3.11)

• Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2
+
√

2
µnf
ρnf

Γ
∂u

∂y

∂2u

∂y2
− µnf
ρnfk

u− σB2
0

ρnf
u. (3.12)

• Concentration Equation:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k1(C − C∞) +

DmKT

Tm

(
∂2T

∂y2

)
.(3.13)
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• Energy Equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

µnf
(ρCp)nf

(
∂u

∂y

)2

+
1√
2

µnf
(ρCp)nf

Γ

(
∂u

∂y

)3

+
(ρCp)f
(ρCp)nf

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

+
σB2

0

(ρCp)nf
u2

− Q0

(ρCp)nf
(T − T∞)−Q1(C − C∞)

+
DmKT

Cs(ρCp)nf

∂2C

∂y2
. (3.14)

In the above equations u the velocity component in the x−direction and v sym-

bol for the velocity component in the y−direction. (ρCp)nf represents the heat

capacitance of nanofluid, T stands for the temperature of fluid, Knf shows ther-

mal conductivity of nanofluid, DB represents coefficient of Brownian diffusion,

C shows volumetric fraction of nanoparticles, (ρCp)f shows the heat capacity of

fluid, DT represents the coefficient of thermophoretric diffusion, Dm represents the

diffusitivity of mass, Cs shows the susceptability of concentration, Tm represents

the temperature at mean level, T∞ shows the temperature fluid at infinite level

and C∞ denotes the ambient fluid concentration, while Q0 indicates the rate of

heat generation, Q1 is known as radiation absorption, ρnf is density of nanofluid,

K1 stands for coefficient of chemical reaction, B0 shows the strength of magnetic

field, and σ denotes the electrical conductivity.

3.2.2 Dimensional Boundary Conditions

The dimensional form of the boundary conditions is given as:

u = Uw = Bx, v = 0, T = Tw = T∞ + A
(x
l

)2

, C = Cw, at y = 0,

u→ 0, T → T∞, C = C∞, as y → ∞,

 (3.15)

where A and B expressed as constants, l shows characteristic length, αnf stands for

thermal diffusivity, ρnf represents density of nanofluid and µnf indicates dynamic
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viscosity of the nanofluid. These fluid properties are given by (Hady et al. [36])

and (Tiwari and Das [37]):

µnf =
µf

(1− φ)2.5
, νf =

µf
ρf
,

ρnf = (1− φ)ρf + φρs,

αnf =
knf

(ρCp)nf
, knf = kf

(
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

)
,

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s,


(3.16)

where knf shows the nanofluid thermal conductivity, φ denotes the volume fraction

of nanoparticle.

3.3 Similarity Transformation

The following transformation has been used to get ODEs from PDEs [25]

u = Bxf ′(η), v = −
√
Bνff(η), η = y

√
B

νf

g(η) =
T − T∞
Tw − T∞

, ϕ(η) =
C − C∞
Cw − C∞

,

 (3.17)

where η is the similarity variable, g(η) denotes the dimensionless temperature,

ϕ(η) represents the dimensionless concentration.

Detailed procedure for the conversion of PDEs into ODEs in the dimensionless

form has been discussed as follows:

Let the velocity components and there partial derivative

∂u

∂x
=

∂

∂x
(Bxf ′(η)),

= Bf ′(η),

∂v

∂y
=

∂

∂y
(−
√
Bνff(η)),

= −Bf ′(η).

Verification of continuity equation has been carried out as:



Numerical Analysis of MHD Williamson Nanofluid Flow... 30

∂u

∂x
+
∂v

∂y
= Bf ′(η)−Bf ′(η) = 0. (3.18)

Next, momentum equation will be converted into the dimensionless form. The

procedure includes the following conversion of different terms from dimensional to

the non-dimensional form.

u
∂u

∂x
= (Bxf ′(η))

∂

∂x
(Bxf ′(η),

= B2xf ′2(η).

v
∂u

∂y
= (−

√
Bνff(η))

∂

∂y
(Bxf ′(η),

= −B2xf(η)f ′′(η).

Taking the left hand side of Eq. (3.12), the following form become

u

(
∂u

∂x

)
+ v

(
∂v

∂y

)
= B2xf ′2 −B2xff ′′,

= B2x(f ′2 − ff ′′).

Next, the right hand side of equation includes

µnf
ρnf

(
∂2u

∂y2

)
=

µnf
ρnf

∂

∂y
(Bxf ′′(η))

√
B

νf
,

=
µnf
ρnf

B2x

νf
f ′′′(η).

√
2
µnf
ρnf

Γ
∂u

∂y

∂2u

∂y2
=
√

2
µnf
ρnf

Γ

(
Bxf ′′

√
B

νf

)(
B2x

νf
f ′′′
)
,

=
√

2
µnf
ρnf

Γ
B

7
2x2

ν
3
2
f

f ′′f ′′′.

Similarly,

− µnf
ρnfk

u = − µnf
ρnfk

(Bxf ′),

−σB
2
0

ρnf
u = −σB

2
0

ρnf
(Bxf ′).
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Using these values in Eq. (3.12),

B2x(f ′2 − ff ′′) =
µnf
ρnf

B2x

νf
f ′′′ +

√
2
µnf
ρnf

Γf ′′′f ′′
B

7
2x2

ν
3
2
f

− µnf
ρnfk

(Bxf ′)− σB2
0

ρnf
(Bxf ′).

Rearrange the equation

µnf
ρnf

B2x

νf
f ′′′ +

√
2
µnf
ρnf

Γf ′′′f ′′
B

7
2x2

ν
3
2
f

− µnf
ρnfk

(Bxf ′)

−σB
2
0

ρnf
(Bxf ′)−B2x(f ′2 − ff ′′) = 0.

Dividing each term of previous equation by
(
B
µnf

ρnf

)
, it becomes

Bx

νf
f ′′′ +

√
2B3

νf
Γxf ′′′f ′′

Bx

νf
− x

k
(f ′)− σB2

0

ρnf
(xf ′)

ρnf
µnf

−Bxf ′2 ρnf
µnf

+Bxff ′′
ρnf
µnf

= 0.

Multiplying each term of prior equation by (νf )

Bxf ′′′ + λf ′′′f ′′Bx− xνf
k

(f ′)− σB2
0

ρnf
(xf ′νf )

ρnf
µnf

−Bxf ′2 ρnf
µnf

νf +Bxff ′′
ρnf
µnf

νf = 0. (3.19)

Using these

• ρnf
µnf

νf =
ρnf
ρf

µf
µnf

ρf
µf
νf

=

[
(1− φ) + φ ρs

ρf

]
ρf
ρf

µf
µf

(1−φ)2.5

=

[
(1− φ) + φ

ρs
ρf

]
(1− φ)2.5

= φ1 (3.20)

• ρnf = [(1− φ)ρf + φρs]
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=

[
(1− φ) + φ ρs

ρf

]
ρf

=
φ2

ρf
(3.21)

and dividing each term of Eq. (3.19) by Bx

f ′′′ + λf ′′′f ′′ − 1

K
(f ′)−Mφ1

φ2

f ′ − f ′2φ1 + ff ′′φ1 = 0.

Finally the dimensionless form of momentum equation reduced as

f ′′′ + λf ′′′f ′′ − φ1

(
f ′2 − ff ′′ + M

φ2

f ′
)
− 1

K
f ′ = 0. (3.22)

Next, we use the following detailed procedure to convert Eq. (3.14) into the

dimensionless form

u
∂T

∂x
= (Bxf ′(η))

∂

∂x
[g(η)(Tw − T∞) + T∞] ,

= (Bxf ′(η))
∂

∂x

[
g(η)A

(x
l

)2

+ T∞

]
,

= (Bxf ′(η))

[
g(η)2Ax

(
1

l

)2
]
,

= 2AB
(x
l

)2

f ′g.

v
∂T

∂y
= (−

√
Bvff(η))

∂

∂y

[
g(η)A

(x
l

)2

+ T∞

]
,

= (−
√
Bvff(η))g′(η)A

(x
l

)2

√
B

νf
,

= −ABfg′
(x
l

)2

.

Left hand side of Eq. (3.14) yields

u
∂T

∂x
+ v

∂T

∂y
= 2AB

(x
l

)2

f ′g − ABfg′
(x
l

)2

,

= AB
(x
l

)2

(2f ′g − fg′).

The following derivatives will help to convert
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the right side of Eq. (3.14) into the dimensionless form

αnf
∂2T

∂y2
= αnfg

′′(η)
B

νf
A
(x
l

)2

,

µnf
(ρCp)nf

(
∂u

∂y

)2

=
µnf

(ρCp)nf

B3x2

νf
f ′′2,

1√
2

µnf
(ρCp)nf

Γ

(
∂u

∂y

)3

=
1√
2

µnf
(ρCp)nf

Γ
B

9
2x3

ν
3
2
f

f ′′3,

(ρCp)f
(ρCp)nf

DB
∂C

∂y

∂T

∂y
=

(ρCp)f
(ρCp)nf

DB
B

νf
(Cw − C∞)(Tw − T∞)ϕ′g′,

(ρCp)f
(ρCp)nf

DT

T∞

(
∂T

∂y

)2

=
(ρCp)f
(ρCp)nf

DT

T∞
g′2(Tw − T∞)2 B

νf
,

σB2
0

(ρCp)nf
u2 =

σB2
0

(ρCp)nf
B2x2f ′2,

− Q0

(ρCp)nf
(T − T∞) = − Q0

(ρCp)nf
g(η)(Tw − T∞)

−Q1(C − C∞) = −Q1(Cw − C∞)ϕ(η),

DmKT

Cs(ρCp)nf

∂2C

∂y2
=

DmKT

Cs(ρCp)nf

B

νf
(Cw − C∞)ϕ′′.

Substituting these values in Eq. (3.14),

AB
(x
l

)2

(2f ′g − fg′) = αnfg
′′(η)

B

νf
A
(x
l

)2

+
µnf

(ρCp)nf

B3x2

νf
f ′′2

+
1√
2

µnf
(ρCp)nf

Γ
B

9
2x3

ν
3
2
f

f ′′3

+
(ρCp)f
(ρCp)nf

[
DB

B

vf
(Cw − C∞)(Tw − T∞)ϕ′g′

+
DT

T∞
g′2(Tw − T∞)2 B

νf

]
+

σB2
0

(ρCp)nf
B2x2f ′2 − Q0

(ρCp)nf
g(η)(Tw − T∞)

−Q1(Cw − C∞)ϕ(η) +
DmKT

Cs(ρCp)nf

B

νf
(Cw − C∞)ϕ′′.

Dividing each term by

(
AB

(x
l

)2
)

on both sides,

(2f ′g − fg′) =
αnf
νf

g′′ +
µnf

(νfρCp)nf

B2l2

A
f ′′2
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+
Γ√
2

µnf
(ρCp)nf

B
7
2x

ν
3
2
f

f ′3

+
(ρCp)f

νf (ρCp)nf
[DB(Cw − C∞)(Tw − T∞)ϕ′g′

+
DT

T∞
g′2(Tw − T∞)2

]
l2B

ABx2

+
σB2

0

(ρCp)nf

Bl2

A
f ′2 − Q0

(ρCp)nf
g(η)(Tw − T∞)

l2

AB

−Q1(Cw − C∞)ϕ(η)
l2

ABx2

+
DmKT

Cs(ρCp)nf

l2

νfAx2
(Cw − C∞)ϕ′′.

Putting the value of αnf it becomes,

(2f ′g − fg′) =
knf

νf (ρCp)nf
g′′ +

µnf
(νfρCp)nf

B2l2

A
f ′′2

+
Γ√
2

µnf
(ρCp)nf

B
7
2x

ν
3
2
f

f ′′3 +
(ρCp)f

νf (ρCp)nf
[DB(Cw − C∞)ϕ′g′

+
DT

T∞
g′2(Tw − T∞)

]
l2B

ABx2
(Tw − T∞) +

σB2
0

(ρCp)nf

Bl2

A
f ′2

−Q0(Tw − T∞)

(ρCp)nf
g(η)−Q1ϕ(η)

(Cw − C∞)

B(Tw − T∞)

+
DmKT

Cs(ρCp)nfνf

(Cw − C∞)

(Tw − T∞)
ϕ′′. (3.23)

Multiplying the term
(ρCp)nf

(ρCp)f
on both sides of Eq. (3.23)

(ρCp)nf
(ρCp)f

(2f ′g − fg′) =
knf
kf

(
kfρf

µf (ρCp)f

)
g′′

+
(ρCp)nf
(ρCp)f

µnf
(νfρCp)nf

B2l2

A
f ′′2

+
(ρCp)nf
(ρCp)f

Γ√
2

µnf
(ρCp)nf

B
7
2x

ν
3
2
f

f ′′3

+
(ρCp)nf
(ρCp)f

(ρCp)f
νf (ρCp)nf

[DB(Cw − C∞)ϕ′g′

+
DT

T∞
g′2(Tw − T∞)

]
+

(ρCp)nf
(ρCp)f

σB2
0

(ρCp)nf

Bl2

A
f ′2
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−(ρCp)nf
(ρCp)f

Q0(Tw − T∞)

(ρCp)nf
g(η)

−(ρCp)nf
(ρCp)f

Q1ϕ(η)
(Cw − C∞)

B(Tw − T∞)

+
(ρCp)nf
(ρCp)f

DmKT

Cs(ρCp)nfνf

(Cw − C∞)

(Tw − T∞)
ϕ′′.

• (ρCp)nf
(ρCp)f

=
[(1− φ)(ρCp)f + φ(ρCp)s]

(ρCp)f

=

[
(1− φ) + φ

(ρCp)s
(ρCp)f

]
= φ3 (3.24)

• µnf

νf (ρCp)nf
=
µnf
µf

ρ

(ρCp)nf

νf
νf

=
µf

(1−φ)2.5

µf

ρf
[(1− φ)(ρCp)f + φ(ρCp)s]

=
µf

µf (1− φ)2.5

ρf
(ρCp)f[

(1− φ) + φ (ρCp)s
(ρCp)f

]
=

ρf
φ4(ρCp)f

(3.25)

Now using the non-dimensional constants,

φ3(2f ′g − fg′) =
knf
kf

(
1

Pr

)
g′′ +

φ3

φ4

Ecf
′′2

+
Γx

2

√
2B3

νf

µnf
(ρCp)nf

B2x2l2

x2Aνf
f ′′3

+
(ρCp)nf
(ρCp)f

(ρCp)f
νf (ρCp)nf

DB(Cw − C∞)ϕ′g′

+
(ρCp)nf
v(ρCp)f

(ρCp)f
νf (ρCp)nf

DT

T∞
g′2(Tw − T∞)

+MEcf
′2 −Heg +Qϕ+Duϕ

′′.

So, the required dimensionless equation of temperature equation,

1

Pr

(
knf
kf

)
g′′ + φ3

(
Ec
φ4

f ′′2 +
Ec
2φ4

λf ′′3 +Nbg
′ϕ′ +Ntg

′2 − 2f ′g + fg′
)

+EcMf ′2 −Heg +Qϕ+Duϕ
′′ = 0. (3.26)
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Next, the concentration equation will be converted into the dimensionless form.

The procedure includes the following conversion of different terms from dimen-

sional to non-dimensional form. Consider left side of the concentration equation

u
∂C

∂x
= (Bxf ′(η))

∂

∂x
(ϕ(η)(Cw − C∞) + C∞),

= Bxf ′(η)(0),

= 0. (3.27)

v
∂C

∂y
= −

√
Bνff(η)

∂

∂y
(ϕ′(η)(Cw − C∞) + C∞),

= −
√
Bvff(η)ϕ′(η)(Cw − C∞)

√
B

νf
,

= −Bf(η)ϕ′(η)(Cw − C∞).

The left hand side of Eq. (3.13) becomes

∂C

∂x
+
∂C

∂y
= 0−Bf(η)ϕ′(η)(Cw − C∞),

= −Bf(η)ϕ′(η)(Cw − C∞).

Next taking the right side of Eq. (3.13).

DB
∂2C

∂y2
= DB

∂

∂y

(
ϕ′(η)(Cw − C∞)

√
B

νf

)
,

= DBϕ
′′(η)(Cw − C∞)

B

νf
.

Similarly derivation of the temperature term involving,

DT

T∞

∂2T

∂y2
=

DT

T∞

∂2

∂y2
(g(η)(Tw − T∞) + T∞),

=
DT

T∞
g′′(η)(Tw − T∞)

B

νf
.

Putting the value of C, it becomes

−k1(C − C∞) = −k1(ϕ(η)(Cw − C∞) + C∞ − C∞),

= −k1ϕ(η)(Cw − C∞).
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Next derivation of the concentration term with respect to y−axis,

DmKT

Tm

(
∂2C

∂y2

)
=

DmKT

Tm
g′′(η)(Tw − T∞)

B

νf
.

Using these values in Eq. (3.13),

−Bf(η)ϕ′(η)(Cw − C∞) = DBϕ
′′(η)(Cw − C∞)

B

vf
+
DT

T∞
g′′(η)(Tw − T∞)

B

vf

−k1ϕ(η)(Cw − C∞) +
DmKT

Tm
g′′(η)(Tw − T∞)

B

νf
.

Dividing by
(
DB(Cw − C∞) B

νf

)
,

−fϕ′ vf
DB

= ϕ′′(η) +
DT

T∞DB

g′′(η)
(Tw − T∞)

Cw − C∞

− k1νf
DBB

ϕ(η) +
DmKT

DBTm
g′′(η)

(Tw − T∞)

(Cw − C∞)
.

Substituting the non-dimensional constants,

ϕ′′ + Scfϕ
′ −K1ϕ+ g′′SrSc + g′′

Nt

Nb

= 0,

ϕ′′ + Scfϕ
′ +

(
Nt

Nb

+ SrSc

)
g′′ −K1ϕ = 0. (3.28)

3.3.1 Boundary Conditions

For converting the associated boundary conditions into the dimensionless form,

the following steps have been performed:

u = Uw = Bx, at y = 0,

Bxf ′(η) = Bx, at η = 0,

⇒ f ′(0) = 1.

v = 0, at y = 0,

−
√
Bνff(η) = 0, at η = 0,

T = Tw = T∞ + A
(x
l

)2

, at y = 0,
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⇒ f(0) = 0.

(Tw − T∞)g(η) + T∞ = Tw, at η = 0,

(Tw − T∞)g(0) = (Tw − T∞)

⇒ g(0) = 1.

C = Cw, at y = 0,

⇒ (Cw − C∞)ϕ(η) + C∞ = Cw, at η = 0,

⇒ (Cw − C∞)ϕ(0) = (Cw − C∞)

⇒ ϕ(0) = 1.

u→ 0 as y →∞,

⇒ Bxf ′(η)→ 0, as η →∞,

⇒ f ′(∞)→ 0.

T → T∞, as y →∞,

⇒ (Tw − T∞)g(η) + T∞ → T∞, as η →∞,

⇒ (Tw − T∞)g(η) + T∞ − T∞ → T∞ − T∞, as η →∞,

⇒ (Tw − T∞)g(∞)→ 0

⇒ g(∞)→ 0.

C → C∞, as y →∞,

⇒ (Cw − C∞)ϕ(η) + C∞ → C∞, as η →∞,

⇒ (Cw − C∞)ϕ(∞) + C∞ − C∞ → C∞ − C∞

⇒ (Cw − C∞)ϕ(∞)→ 0

⇒ ϕ(∞)→ 0.

3.3.2 Non-Dimensional Equations

f ′′′ + λf ′′′f ′′ − φ1

(
f ′2 − ff ′′ + M

φ2

f ′
)
− 1

K
f ′ = 0, (3.29)

K0

Pr
g′′ + φ3

(
Ec
φ4

f ′′2 +
Ec
2φ4

λf ′′3 +Nbg
′ϕ′ +Ntg

′2 − 2f ′g + fg′
)

+EcMf ′2 −Heg +Qϕ+Duϕ
′′ = 0, (3.30)
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ϕ′′ + Scfϕ
′ +

(
Nt

Nb

+ SrSc

)
g′′ −K1ϕ = 0, (3.31)

with boundary conditions:

f(0) = 0, f ′(0) = 1, g(0) = 1, ϕ(0) = 1, (3.32)

g(∞)→ 0, f ′(∞)→ 0, ϕ(∞)→ 0.

In the above equations M represents magnetic parameter, Pr shows the Prandtl

number, λ stands for non-Newtonian parameter, Ec the Eckert number, K repre-

sents porosity number, He shows the heat generation rate parameter, Nb stands

for Brownian motion parameter, Nt the thermopheroesis parameter, Sc known as

Schmidt number, K1 shows the chemical reaction parameter, Du Dufour number,

Sr Soret number and Q stands for radiation absorption parameter. The above

mentioned parameters are defined as follow:

M =
x

Uw

σB2
0

ρf
, λ = Γx

√
2B3

vf
, Pr =

vf
αf
, Ec =

U2
w

(Cp)f (Tw − T∞)
, K =

kUw
vfx

,

He =
xQ0

(ρCp)fUw
, Nb =

τDB

vf
(Cw − C∞), Nt =

τDT

vfT∞
, Sc =

vf
DB

, K0 =
knf
kf

,

K1 =
k1vf
BDB

, Du =
DmKT (Cw − C∞)

Csvf (ρCp)f (Tw − T∞)
, Sr =

DmKT (Tw − T∞)

Tmvf (Cw − C∞)
,

Q =
Q1(Cw − C∞)(ρCp)nf
B(Tw − T∞)(ρCP )f

.

Where,

φ1 = (1− φ)2.5

[
1− φ+ φ

(
ρs
ρf

)]
,

φ2 =

[
1− φ+ φ

(
ρs
ρf

)]
,

φ3 =

[
1− φ+ φ

(
(ρCp)s
(ρCp)f

)]
,

φ4 = (1− φ)2.5

[
1− φ+ φ

(
(ρCp)s
(ρCp)f

)]
.


(3.33)
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3.4 Physical Quantities of Interest

We are now interested in studying the skin friction coefficient Cf , the local Nusselt

number Nux (heat transfer rate) and the Sherwood number Sh. The parameters

defined as the amount rate of drag surface and heat transfer at wall. Such physical

quantities are described as follow:

Mathematical form of skin coefficient friction is

Cf =
τw
ρfU2

w

. (3.34)

Nusselt number is defined as

Nux =
−x

(Tw − T∞)

(
∂T

∂y

)
y=0

. (3.35)

The quantity of Sherwood number is

Sh =
−x

(Cw − C∞)

(
∂C

∂y

)
y=0

. (3.36)

The wall heat is defined as

(
∂T

∂y

)
y=0

= g′(0)(Tw − T∞)

√
B

νf
, (3.37)

and (∂C
∂y

)y=0 denotes the mass transfer

(
∂C

∂y

)
y=0

= ϕ′(0)(Cw − C∞)

√
B

vf
, (3.38)

Shear stress at the surface is defined as

τw = µnf

(
∂u

∂y
+

Γ√
2

(
∂u

∂y

)2
)
y=0

. (3.39)

Converting τw into dimensionless form as follows

τw =
µf

(1− φ)2.5

Bx√B

νf
f ′′(0) +

Γ√
2

(
Bx

√
B

νf

)2

f ′′2(0)

 . (3.40)
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Following dimensionless form obtained for Nusselt number, Sherwood number and

skin friction coefficient by using equations (3.37), (3.38) and (3.40).

Cf =
τw
ρfU2

w

,

=
µf

ρfU2
w(1− φ)2.5

Bx√B

νf
f ′′(0) +

Γ√
2

(
Bx

√
B

νf

)2

f ′′2(0)

 ,

=
µf

ρfU2
w(1− φ)2.5

Bx√B

νf
f ′′(0) +

2Γ

2
√

2
B2x2

(√
B

νf

)2

f ′′2(0)

 ,

=
νf

U2
w(1− φ)2.5

Bx

√
B

νf

(
f ′′(0) +

√
2Γx

2

√
B3

νf
f ′′2(0)

)
,

Multiply both sides by (1− φ)2.5

Cf (1− φ)2.5 =
νf
U2
w

Bx

√
B

νf

(
f ′′(0) +

λ

2
f ′′2(0)

)
(∵ νf =

µf
ρf

),

Cf (1− φ)2.5 =
νf
B2x2

Bx

√
B

νf

(
f ′′(0) +

λ

2
f ′′2(0)

)
,

Cf (1− φ)2.5 =

√
νf
Uwx

(
f ′′(0) +

λ

2
f ′′2(0)

)
(∵ Uw = Bx),

⇒ (Rex)
1
2Cf (1− φ)2.5 =

(
f ′′(0) +

λ

2
f ′′2(0)

)
. (3.41)

Dimensionless Nusselt number is

Nux =
−x

(Tw − T∞)

(
∂T

∂y

)
y=0

,

=
−x

(Tw − T∞)
g′(0)

√
B

vf
(Tw − T∞),

= −

√
xUw
νf

g′(0) (∵ Uw = Bx),

⇒ (Rex)
−1
2 Nux = −g′(0). (3.42)
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Non-dimensional Sherwood number is

Sh =
−x

(Cw − C∞)

(
∂C

∂y

)
y=0

,

=
−x

(Cw − C∞)
ϕ′(0)

√
B

vf
(Cw − C∞),

= −

√
xUw
νf

ϕ′(0), (3.43)

⇒ (Rex)
−1
2 Sh = −ϕ′(0).

The local Reynolds number is Rex = xUw

νf
.

3.5 Numerical Scheme

In this section, the shooting method has been used together with RK4 method

to solve the system of nonlinear ordinary differential equations (3.29)-(3.31) along

with boundary conditions (3.32). We adopt the following procedure:

f ′′′ =
φ1

[
f ′2 − f ′′f + f ′

(
M
φ2

)]
− f ′

(
1
K

)
(1 + λf ′′)

, (3.44)

g′′ =
1(

1
Pr

(
knf

kf

)
−Du

(
Nt

Nb
+ SrSc

)) [−φ3

{
fg′ − 2f ′g + f ′′2

(
Ec
φ4

)

+f ′′3
(
λEc
2φ4

)
+Nbg

′ϕ′ +Ntg
′2
}

+ EcMf ′
2 −Heg

+Qϕ−DuScfϕ
′ +DuK1ϕ] , (3.45)

ϕ′′ = −Scfϕ′ −
(
Nt

Nb

+ SrSc

)
g′′ +K1ϕ. (3.46)

f(0) = 0, f ′(0) = 1, g(0) = 1, ϕ(0) = 1,

g(∞)→ 0, f ′(∞)→ 0, ϕ(∞)→ 0.
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First Eq. (3.44) is numerically solved and then the calculated results for f, f ′, f ′′

will be used in Eq. (3.45) and Eq. (3.46) as a recognize input. By using shooting

method Eq. (3.44) is solved independently. To apply shooting method, we convert

the BVP into IVP by assuming the missing initial condition. We introduce the

following notations for further simplification.

f = y1, f
′ = y2, f

′′ = y3,
∂f

∂χ
= y4,

∂f ′

∂χ
= y5,

∂f ′′

∂χ
= y6,

where χ is the assumed initial condition.

The system of first order ODEs and the corresponding initial condition can be

written as

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 1,

y′3 =

φ1

[
y2

2 − y1y3 + y2

(
M
φ2

)]
− y2

(
1
K

)
(1 + λy3)

, y3(0) = χ,

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = 0,

y′6 =

[
φ1

{
2y2y5 − y1y6 − y3y4 + y5

(
M

φ2

)}
+ y5

(
1

K

)
(1 + λy3)

−(λy6)

{
φ1

(
y2

2 − y1y3 + y2

(
M

φ2

))
+ y2

(
1

K

)}]
1

(1 + λy3)2
, y6(0) = 1.

For the solution of above initial value problem we use Runge Kutta method of order

four. The approximate solution of Eq. (3.44) can be obtained by converting the

unbounded domain [0,∞) into bounded domain [0, η∞], where η∞ is an applicable

finite positive real number with chosen initial guess χ such that

F (χ) = y2(η∞, χ)− 1 = 0. (3.47)

To solve the algebraic Eq. (3.47), we apply the Newton method which has

the following iterative procedure:

χn+1 = χn −

(
y2(η∞, χ)− 1

(∂y2(η∞,χ)
∂χ

)

)
, n = 0, 1, 2, 3, .. (3.48)
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As a result of derivative notations ∂y2(η∞,χ)
∂χ

, the Newton iterative scheme gets the

form

χn+1 = χn −
(
y2(η∞, χ)− 1

y5(η∞)

)
. (3.49)

The threshold for the shooting method is defined as follows:

|y2(η∞)− 1| < ε, (3.50)

where ε is taken as 10−6. The method has been repeated until this criteria is

fulfilled. In order to apply numerical method for the solution of Eq. (3.45) and

Eq. (3.46), we denote the missing initial condition g(0) and ϕ(0) by q and r,

respectively and different notations have been used which are given below

g = Y1, g
′ = Y2, φ = Y3, φ

′ = Y4,
∂g

∂q
= Y5,

∂g′

∂q
= Y6,

∂φ

∂q
= Y7,

∂ϕ′

∂q
= Y8,

∂g

∂r
= Y9,

∂g′

∂r
= Y10,

∂ϕ

∂r
= Y11,

∂ϕ′

∂r
= Y12

 (3.51)

Using these notations, we get a system of first order ODEs which are given below

Y ′1 = Y2,

Y ′2 =
1(

1
Pr

(
knf

kf

)
−Du

(
Nt

Nb
+ SrSc

)) [−φ3

(
y1Y2 − 2y2Y1 + y2

3

(
Ec
φ4

)
+ y3

3

(
λEc
2φ4

)

+NbY2Y4 +NtY
2

2

)
− EcMy2

2 +HeY1 −QY3 +DuScy1Y4 −DuK1Y3

]
,

Y ′3 = Y4,

Y ′4 = −Scy1Y4 +


(
Nt

Nb
+ SrSc

)
1
Pr

(
knf

kf

)
−Du

(
Nt

Nb
+ SrSc

)
[−φ3

{
y1Y2 − 2y2Y1 + y2

3

(
Ec
φ4

)

+y3
3

(
λEc
2φ4

)
+NbY2Y4 +NtY

2
2

}
− EcMy2

2 +HeY1 −QY3

+DuScy1Y4 −DuK1Y3)] +K1Y3,

Y ′5 = Y6,



Numerical Analysis of MHD Williamson Nanofluid Flow... 45

Y ′6 =

 1

1
Pr

(
knf

kf

)
−Du

(
Nt

Nb
+ SrSc

)
 [−φ3 {y1Y6 − 2y2Y5 +Nb(Y6Y4 + Y2Y8)}

+Nt(2Y2Y6) +HeY5 −QY7 +DuScy1Y8 −DuK1Y7] ,

Y ′7 = Y8,

Y ′8 = −Scy1Y8 +


(
Nt

Nb
+ SrSc

)
1
Pr

(
knf

kf

)
−Du

(
Nt

Nb
+ SrSc

)
 [−φ3 {y1Y6 − 2y2Y5

+Nb(Y6Y4 + Y2Y8) +Nt(2Y2Y6)}+HeY5 −QY7

+DuScy1Y8 −DuK1Y7) +K1Y7] ,

Y ′9 = Y10,

Y ′10 =

 1

1
Pr

(
knf

kf

)
−Du

(
Nt

Nb
+ SrSc

)
 [−φ3 {y1Y10 − 2y2Y9 +Nb(Y10Y4 + Y2Y11)}

+Nt(2Y2Y10) +HeY5 −QY11 +DuScy1Y12 −DuK1Y11] ,

Y ′11 = Y12,

Y ′12 = −Scy1Y12 +


(
Nt

Nb
+ SrSc

)
1
Pr

(
knf

kf

)
−Du

(
Nt

Nb
+ SrSc

)
 [−φ3 {y1Y10 − 2y2Y9

+Nb(Y10Y4 + Y2Y12) +Nt(2Y2Y10)}+HeY9 −QY11

+DuScy1Y12 −DuK1Y11] +K1Y11, .

The resulting form of boundary conditions is

Y1(0) = 1, Y2(0) = q, Y3(0) = 1, Y4(0) = r, Y5(0) = 0, Y6(0) = 1,

Y7(0) = 0, Y8(0) = 0, Y9(0) = 0, Y10(0) = 0, Y11(0) = 0, Y12(0) = 1.

In order to solve the above initial value problem, we used RK4 method and selected

the missing conditions in such a way that

(Y1(q, r))η=η∞ = 0, (Y3(q, r))η=η∞ = 0. (3.52)

The above set of equations can be solved by Newton method with following

iterative formula:
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qn+1

rn+1

 =

qn
rn

−
∂Y1(q,r)

∂q
∂Y1(q,r)
∂r

∂Y3(q,r)
∂q

∂Y3(q,r)
∂r

−1 Y1

Y3


(qn,rn,η∞)

We utilize the derivative notation as followsqn+1

rn+1

 =

qn
rn

−
Y5 Y9

Y7 Y11

−1 Y1

Y3


(qn,rn,η∞)

where n = 0,1,2,3,....

The terminating process for the shooting method is adjusted as:

max{|Y1(η∞)|, |Y3(η∞)|} < ε,

where ε is a small positive number. From now onward ε has been taken as 10−6

whereas η∞ set as 5.

3.6 Graphical Discussion

The numerical results of the equations in the preceding sections are discussed us-

ing the graphs in this section. The numerical calculations are performed for the

influence of various important parameters, including porosity parameter K, non-

Newtonian Williamson parameter λ, magnetic parameter M , Prandtl number Pr,

radiation absorption parameter Q, Eckert number Ec, chemical reaction parameter

K1, heat generation rate parameter He, Soret number Sr, Dufour number Du, ther-

mophoresis parameter Nt, Brownian motion parameter Nb, and Schmidt number

Sc. These parameters have a direct influence on the distribution of concentration,

temperature, and velocity.

3.6.1 Effect of Porosity Parameter K

Figure 3.2 shows that the influence of the porosity parameter on the field of veloc-

ity, and it is noticed that the fluid velocity increases by increasing the values of K.
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Physically the boosting behavior of the porous medium is expressed by increasing

the values of K. Furthermore, the lower resistance in the flow finally going to rise

the velocity profile.

3.6.2 Effect of Non-Newtonian Williamson Parameter λ

The impact of non-Newtonian Williamson parameter on the velocity profile is

shown in Figure 3.3. The fluid velocity is reduced by an increase in λ. It is obvious

that an increase in non-Newtonian fluid the elasticity contributes to decrease in

the fluid flow. It is elucidated that the velocity fluid and boundary layer thickness

diminish with the increment in non-Newtonian Williamson variable λ.

3.6.3 Effect of Magnetic Parameter M

The transverse magnetic field effect on the field of velocity is sketched in Figure 3.4.

It is illustrated that the velocity diminishes while the M values increases. Physical

significance, the existence of a transverse magnetic field ultimately leads to a drag

force called Lorentz force that will cause retardation in the distribution of velocity.

With the increase of M , the concentration profiles increase as seen in Figure 3.5.

As the value of M increases, it excites the motion of fluid particles which is due

to enhance the Brownian motion, can spread rapidly into the neighbouring fluid

layers.

3.6.4 Effect of Radiation Absorption Parameter Q

It can be seen from Figure 3.8 that the temperature field increases with Q. This is

because the high Q values lead to increased conduction domination. The influence

of radiation absorption parameter Q on the dimensionless concentration field φ(η)

is expressed in Figure 3.9. By enlarging the radiation absorption parameter on

the concentration profile make the thickness of boundary layer decreases.
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3.6.5 Effect of Volume Fraction of Nanoparticles φ1

Figure 3.6 displays the impact of volume fraction of nanoparticles on the velocity

profiles φ1. From the figure it is apparent that the rise in volume fraction of

nanoparticles depreciates the fluid velocity. Figure 3.7 indicates that the fluid

concentration is increased by an increase in the nanoparticles of volume fraction.

3.6.6 Effect of Prandtl Number Pr

Figure 3.10 illustrates that decreasing temperature with the Pr. Basically, Prandtl

number restraint the comparative thickness of the thermal and momentum bound-

ary layer. Moreover, graph portrays the behavior of g(η) for diverse values of Pr.

It stands noted that as the values of Pr rise, the temperature falls. Once there is

a rise in Pr, a marked reduction in the thermal boundary-layer is noted. In other

words, higher Pr results lower thermal diffusivity. However, a higher estimation

value of Pr makes lowers diffusivity, while increases the thermal characteristics.

Figure 3.11 explores that the finding of prandtl number on the concentration dis-

tribution, which certainly reveals that profile of concentration of the nanofluid

increase with prandtl number Pr.

3.6.7 Effect of Eckert Number Ec

Figure 3.12 is specified to show that the thickness of the temperature field and

the thermal boundary layer is expanded as boosting values of the Eckert number.

Due to the fact that the dissipation rises by increasing the values of Ec because of

this in higher dissipation the fluid internal energy also enhanced. Figure 3.13 is

plotted that the influence of Ec on the concentration field φ(η). Actually, Eckert

number can be written as a ratio of kinetic energy of the fluid particle and thermal

energy. Concentration of the fluid decreases by increasing the Ec Eckert number.

Physically, by the growth of thermal energy it will decrease the kinetic energy of

the fluid particle so the distribution of concentration becomes lower.
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3.6.8 Effect of Chemical Reaction Parameter K1

Figure 3.14 is graphed to demonstrate the influence of the K1 on the profile of

the temperature g(η), g is observed to decrease with boosting values of K1. The

effect of the chemical reaction parameter over the non-dimensional concentration

field is expressed in Figure 3.15. Graph is illuminated by the larger variation

of chemical reaction parameter reduces the fluid concentration. It can happen

because chemical reaction assists to facilitate the transfer of mass and decreases

the boundary layer thickness.

3.6.9 Effect of Dufour Number Du

Figure 3.18 indulges the impact of Dufour number on the dimensionless temper-

ature field. It is evident that for the higher values of Du, the temperature of

fluid decreases up to a certain value close to the wall of stretching sheet, but the

opposite pattern is observed beyond this point. Figure 3.19 shows that raising

the Dufour number Du values initially leads to a deep enhancement in the field of

concentration with a little bit decline. Nearby the stretching the surface concen-

tration of fluid increases with increasing Du Dufour number hence the opposite

trend is noticed that is away from the wall.

3.6.10 Effect of Soret Number Sr

Figure 3.22 explores that with the increment of Sr the concentration boundary

layer thickness ultimately contributes to an increase in the concentration field ϕ

as the mass flux generated by the temperature gradient to enhance the profiles.

The graph illustrates to analyze the influence of Sr Soret number on non dimen-

sional ϕ(η) concentration distribution. For higher estimation of (Sr = 0.2, 0.8, 1.3)

concentration field ϕ(η) and the boundary layer thickness increases. It is on ac-

count to the validity for higher Sr temperature gradient of fluid shoot up which
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corresponds to elevated the convective flow. Thus non dimensional concentration

of fluid ϕ(η) increases.

3.6.11 Effect of Thermophoresis Parameter Nt

The effect of thermophoresis parameter Nt on g(η) is shown in Figure 3.20. The

temperature of fluid upgrades and therefore the opacity of the thermal boundary

region rises while the Nt thermophoresis parameter escalates. Figure 3.24 exhibits

the visualization of thermophoresis parameter Nt on the concentration field. Gen-

erally, in the presence of thermophoresis parameter particles of fluid moving from

hotter to colder area of the fluid by exert forces. So because of this transportation

the dimensionless concentration of the fluid ϕ increases.

3.6.12 Effect of Heat Sink Parameter He

Figure 3.16 is graphed to demonstrate the influence of the heat sink parameter

on the profile of the temperature g(η), temperature boundary layer is observed to

decrease with the increasing values of He. Figure 3.17 reflects the impact of He on

the concentration field ϕ(η). It is noted that by increasing He, the concentration

field increases.

3.6.13 Effect of Schmidt Number Sc

Figure 3.23 illustrates that the alteration of the Sc on concentration profiles. Ac-

tually, Schmidt number is the relation between the momentum diffusivity to Bor-

wnian diffusivity. It is shown that near the stretching sheet wall, the concentration

profiles increase with increasing Sc up to a certain value of η but apart from this

point the opposite pattern is observed.
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3.6.14 Effect of Brownian Motion Nb

Figure 3.21 elucidates that the concentration distribution decrease with larger

values of the Brownian motion Nb. Essentially, that holds since the collision of

the fluid macroscopic particles and random motion rises with the increment of Nb.

Due to this lower the non-dimensional concentration of fluid ϕ can be visualized.
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Figure 3.2: The effect of K is plotted against η on velocity profile.
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Figure 3.3: The effect of λ is plotted against η on velocity profile.
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Figure 3.4: The effect of M is plotted against η on velocity profile.
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Figure 3.5: The effect of M is plotted against η on nanoparticles concentration
profile for different values.
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Figure 3.6: The effect of φ1 is plotted against η on velocity profile.
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Figure 3.7: The effect of φ1 is plotted against η on nanoparticles concentration
profile.
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Figure 3.8: The effect of Q is plotted against η on temperature profile for
different values.
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Figure 3.9: The effect of Q is plotted against η on nanoparticles concentration
profile for different values.
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Figure 3.10: The effect of Pr is plotted against η on temperature profile for
different values.
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Figure 3.11: The effect of Pr is plotted against η on nanoparticles concentra-
tion profile for different values.
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Figure 3.12: The effect of Ec is plotted against η on temperature profile for
different values.
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Figure 3.13: The effect of Ec is plotted against η on nanoparticles concentra-
tion profile.
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Figure 3.14: The effect of K1 is plotted against η on temperature profile for
different values.
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Figure 3.15: The effect of K1 is plotted against η on nanoparticles concentra-
tion profile for different values.
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Figure 3.16: The effect of He is plotted against η on temperature profile for
different values.
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Figure 3.17: The effect of He is plotted against η on nanoparticles concentra-
tion profile for different values.
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Figure 3.18: The effect of Du is plotted against η on temperature profile for
different values.
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Figure 3.19: The effect of Du is plotted against η on nanoparticles concentra-
tion profile for different values.
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Figure 3.20: The effect of Nt is plotted against η on temperature profile for
different values.
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Figure 3.21: The effect of Nt is plotted against η on nanoparticles concentra-
tion profile.
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Figure 3.22: The effect of Sr is plotted against η on nanoparticles concentra-
tion profile for different values.
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Figure 3.23: The effect of Sc is plotted against η on nanoparticles concentra-
tion profile for different values.
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Figure 3.24: The effect of Nb is plotted against η on nanoparticles concentra-
tion profile.



Chapter 4

MHD Stagnation Point Flow with

Effect of Inclined Magnetic Field,

Joule Heating and Thermal

Radiation

In the modern industry, the analysis of MHD stagnation point flow has been inves-

tigated by many researchers due to its many applications. This chapter comprises

the solution for boundary layer stagnation point flow over stretching sheet with

influence of thermal radiation and inclined magnetic field with Joule heating tak-

ing into account. Non-linear partial differential equations for the conservation of

mass, momentum and concentration are converted into the ordinary differential

equation by utilizing appropriate similarity transformation. Numerical solution

of these ordinary differential equations is attained by manipulating shooting tech-

nique together with RK4 scheme. Eventually the results are discussed for different

parameters affecting the flow fluid and heat transfer. Impact of distinct physical

parameters across dimensionless temperature, concentration and velocity profiles

are illustrated by graphs. The numerical values of skin friction coefficient, Nusselt

number and Sherwood number are computed in tabular form.
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Figure 4.1: Schematic diagram of the physical model

4.1 Mathematical Modeling

Consider the laminar, two dimensional steady and incompressible MHD stagnation

point flow of a fluid with inclined magnetic field and thermal radiation over a

stretching sheet through porous medium. This sheet is placed in the plane y = 0,

such that y−axis is normal and perpendicular to the sheet. The flow of nanofluid

is constrained to the surface y > 0, the origin is kept fixed while the sheet is

stretching with velocity u = Uw = Bx and Ue = Ax is the free stream velocity

where B and A are two positive constants. The inclined magnetic field is applied to

the sheet with an acute angle ω, (0 ≤ ω ≤ π
2
). Moreover, the direction of uniform

magnetic field is chosen in such a manner that it is normal and perpendicular to

the surface of the fluid flow. The nanoparticles concentration is Cw and for y →∞,

the ambient temperature of fluid is T∞ and ambient concentration of fluid is C∞.

Under the light of above assumptions, the governing equations are described as:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
=

µnf
ρnf

∂2u

∂y2
+
√

2
µnf
ρnf

Γ
∂u

∂y

∂2u

∂y2
− µnf
ρnfkp

(Ue − u) + Ue
∂Ue
∂x
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+
σB2

0

ρnf
(Ue − u) sin2 ω, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

µnf
(ρCp)nf

(
∂u

∂y

)2

+
1√
2

µnf
(ρCp)nf

Γ

(
∂u

∂y

)3

+
(ρCp)f
(ρCp)nf

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

− 1

(ρCp)nf

∂qr
∂y

+
σB2

0

(ρCp)nf
(Ue − u)2 sin2 ω, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k1(C − C∞). (4.4)

The associated boundary conditions are:

u = Uw = Bx, v = 0, Ue = Ax, T = Tw = T∞

+ A
(x
l

)
, C = Cw, at y = 0,

u→ U∞, T → T∞, C = C∞, as y → ∞.

 (4.5)

In 1904, Ludwig prandtl first defined the aerodynamic boundary layer at the third

International Congress of Mathematician in Heidleberg Germany. After that one

of his student Henry Blasius presented the boundary layer approximation with

similarity transformation. By Boundary layer approximation theory, here we have

consider those terms which have greater impact of magnitude while eliminate those

who have less impact of magnitude from th well known Navier-Stokes equations.

In the above equations ω denotes the inclination angle of magnetic field, and the

qr known as Rosseland radiative heat flux which can be define as

qr =
−4σ∗∂T 4

3k∗∂y
. (4.6)

In this expression k∗ (absorption coefficient) and σ∗ (Boltzmann constant). By

applying Taylor series, the temperature difference T 4 can be expanded about T∞

which is ambient temperature.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) +
12T 2

∞
2!

(T − T∞)2 +
24T∞

3!
(T − T∞)3 + ...

By ignoring the higher order terms of temperature difference because its
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impact is very small, so the reduced Taylor series gets the form

T 4 = T 4
∞ + 4T 3

∞(T − T∞).

then
∂T 4

∂y
= 4T 3∂T

∂y
. (4.7)

Using Eq. (4.7) in Eq. (4.6) and then differentiate Eq. (4.6) with respect to y,

∂qr
∂y

= −16σ∗T 3
∞

3k∗
∂2T

∂y2
. (4.8)

By using the similarity transformation Eq. (3.17), the partial differential equa-

tions converted into ordinary differential equations. Detailed procedure for the

derivation of continuity equation and left hand side of momentum equation have

been already discussed in the previous Chapter. So in order to derive the right

hand side of Eq. (4.2) same procedure will be followed like in Chapter 3.

µnf
ρnf

∂2u

∂y2
=

µnf
ρnf

∂

∂y
(Bxf ′′(η))

√
B

νf
,

=
µnf
ρnf

B2x

νf
f ′′′. (4.9)

√
2
µnf
ρnf

Γ
∂u

∂y

∂2u

∂y2
=
√

2
µnf
ρnf

Γ

(
Bxf ′′

√
B

νf

)(
B2x

νf
f ′′′
)
,

=
√

2
µnf
ρnf

Γ
B

7
2x2

ν
3
2
f

f ′′f ′′′. (4.10)

Next

− µnf
ρnfkp

(Ue − u) = − µnf
ρnfkp

(Ax−Bxf ′),

−σB
2
0

ρnf
(Ue − u) sin2 ω = −σB

2
0

ρnf
(Ax−Bxf ′) sin2 ω. (4.11)

Similarly

Ue
∂Ue
∂x

= Ax
∂

∂x
(Ax).

= A2x. (4.12)
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Substituting Eq. (3.19) and Eq. (4.9)-(4.12) in Eq. (4.2)

B2x(f ′2 − ff ′′) =
µf

(1− φ)2.5((1− φ)ρf + φρs)

B2x

νf

(
f ′′′ +

√
2Γf ′′′f ′′

√
B3

νf

)
+

µf
(1− φ)2.5((1− φ)ρf + φρs)kp

(Ax−Bxf ′) + A2x

+
σB2

0

(1− φ)ρf + φρs
(Ax−Bxf ′) sin2(ω). (4.13)

Dividing B2x on both sides of Eq. (4.13)

f ′2 − ff ′′ = µnf
ρf (1− φ)2.5((1− φ) + φ ρs

ρf
)

1

νf
(f ′′′ + λf ′′′f ′′)

+
µf

ρf (1− φ)2.5((1− φ) + φ ρs
ρf
Bkp)

(
A

B
− f ′

)
+
A2

B2

+
σB2

0Bx

((1− φ)ρf + φρs)B2x

(
A

B
− f ′

)
sin2(ω),

f ′2 − ff ′′ = 1

φ1

(f ′′′ + λf ′′′f ′′) +
νf

φ1Bxkp

(
A

B
− f ′

)
+
A2

B2
+

σB2
0x

ρfφ2Bx

(
A

B
− f ′

)
sin2(ω), (4.14)

f ′2 − ff ′′ = 1

φ1

(f ′′′ + λf ′′′f ′′) +
1

Kφ1

(E − f ′)

+E2 +
M

φ2

(E − f ′) sin2(ω). (4.15)

Hence the final dimensionless form is

f ′′′(1 + λf ′′)− φ1

(
f ′2 − ff ′′ − E2 − M

φ2

(E − f ′) sin2 ω

)
+

1

K
(E − f ′) = 0.

Next converting the dimensional temperature equation into the non-

dimensional form. Calculating the temperature component along

x and y direction as

u
∂T

∂x
= (Bxf ′(η))

∂

∂x
[g(η)(Tw − T∞) + T∞] ,

= (Bxf ′(η))(0),

= 0. (4.16)
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v
∂T

∂y
= (−

√
Bvff(η))

∂

∂y
[g(η)(Tw − T∞) + T∞] ,

= (−
√
Bvff(η))g′(η)(Tw − T∞)

√
B

νf
,

= −Bf(η)g′(Tw − T∞). (4.17)

Adding both equations (4.16) and (4.17), it becomes

u
∂T

∂x
+ v

∂T

∂y
= −Bf(η)g′(Tw − T∞). (4.18)

Furthermore, all expressions on the right side of temperature equation have been

transformed into the dimensionless form individually as stated below:

∂2T

∂y2
= g′′(Tw − T∞)

B

νf
(4.19)

(
∂u

∂y

)2

=
B3x2

νf
f ′′2 (4.20)

∂C

∂y
.
∂T

∂y
=
B

νf
(Tw − T∞)(Cw − C∞)ϕ′g′ (4.21)

(
∂u

∂y

)3

=
B

9
2x3

ν
3
2
f

f ′′3 (4.22)

(
∂T

∂y

)2

= g′2(Tw − T∞)2 B

νf
(4.23)

(u− Ue)2 = (Bxf ′ − Ax)2 (4.24)

∂qr
∂y

=
−16σ∗

3k∗
T 3
∞g
′′(Tw − T∞)

B

νf
(4.25)

Substituting all these equations (4.19)-(4.25) in the right hand side

= αnfg
′′(Tw − T∞)

B

νf
+

µnf
(ρCp)nf

B3x2

νf
f ′′2 +

1√
2

µnf
(ρCp)nf

Γ
B

9
2x3

ν
3
2
f

f ′′3

+
(ρCp)f
(ρCp)nf

(
DB

B

νf
(Tw − T∞)(Cw − C∞)ϕ′g′ +

DT

T∞
g′2(Tw − T∞)2 B

νf

)
+

σB2
0

(ρCp)nf
sin2 ω(Bxf ′ − Ax)2 − 1

(ρCp)nf

−16σ∗

3k∗
T 3
∞g
′′(Tw − T∞)

B

νf
.

Combining both left hand side and right hand side
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−Bf(η)g′(Tw − T∞) = αnfg
′′(Tw − T∞)

B

νf
+

µnf
(ρCp)nf

B3x2

νf
f ′′2

+
1√
2

µnf
(ρCp)nf

Γ
B

9
2x3

ν
3
2
f

f ′′3 +
(ρCp)f
(ρCp)nf

(
DB

B

νf

(Tw − T∞)(Cw − C∞)ϕ′g′ +
DT

T∞
g′2(Tw − T∞)2 B

νf

)
+

σB2
0

(ρCp)nf
sin2 ω(Bxf ′ − Ax)2

− 1

(ρCp)nf

−16σ∗

3k∗
T 3
∞g
′′(Tw − T∞)

B

νf
.

Dividing this term B(Tw − T∞) on both sides

−f(η)g′(η) = αnfg
′′ 1

νf
+

µnf
(ρCp)nf

B2x2

νf (Tw − T∞)
f ′′2

+
2Γ

2
√

2

µnf
(ρCp)nf

B
7
2x3

ν
3
2
f (Tw − T∞)

f ′′3

+
(ρCp)f
(ρCp)nf

(
DB

1

νf
(Cw − C∞)ϕ′g′ +

DT

T∞
g′2(Tw − T∞)

1

νf

)
+

σB2
0x

2

(ρCp)nfB(Tw − T∞)
sin2 ω(Bf ′ − A)2

− 1

(ρCp)nf

−16σ∗T 3
∞

3k∗νf
g′′.

Multiplying both sides with
(ρCp)nf

ρCp)f

−f(η)g′(η)
(ρCp)nf
(ρCp)f

=
knf
kf

kfρf
µf (ρCp)f

g′′ +
µnf

(ρCp)nf

(ρCp)nf
(ρCp)f

(
B2x2

νf (Tw − T∞)
f ′′2

+
Γ

2

√
2B3νfx

(Tw − T∞)
f ′′3

)
+

(ρCp)nf
(ρCp)f

(ρCp)f
(ρCp)nf

(
DB

1

νf

(Cw − C∞)φ′g′ +
DT

T∞
g′2(Tw − T∞)

1

νf

)
+

(ρCp)nf
(ρCp)f

σB2
0x

2

(ρCp)nfB(Tw − T∞)
sin2 ω(f ′ − E)2

−(ρCp)nf
(ρCp)f

1

(ρCp)nf

−16σ∗T 3
∞

3k∗νf
g′′.

Using dimensionless constants

−φ3fg
′ =

knf
kf

g′′ +
φ3

φ4

Ec(f
′′2 +

λ

2
f ′′3) + φ3(Nbϕ

′g′
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+Ntg
′2) +MEc(f

′ − E)2 sin2 ω +
4R

3Pr
g′′.

Hence the non-dimensional form of Eqn. (4.3)

g′′
(
knf
kf

+
4

3
R

)
+ φ3Pr

(
fg′ + f ′′2

Ec
φ4

+ f ′′3
λEc
2φ4

+Nbϕ
′g′ +Ntg

′2
)

+MEcPr(f
′ − E)2 sin2 ω = 0. (4.26)

Next, we include the procedure for the conversion of (4.4) into the dimensionless

form. The left hand side of Eq. (4.4) into the dimensionless form is similar to that

discussed in Chapter 3. To convert the right side of concentration equation into

the dimensionless form, steps proceed as follows:

DB
∂2C

∂y2
= DB

∂

∂y

(
ϕ′(η)(Cw − C∞)

√
B

νf

)
,

= DBϕ
′′(η)(Cw − C∞)

b

νf
. (4.27)

DT

T∞

∂2T

∂y2
=

DT

T∞

∂2

∂y2
(g(η)(Tw − T∞) + T∞),

=
DT

T∞
g′′(η)(Tw − T∞)

B

νf
. (4.28)

−k1(C − C∞) = −k1(ϕ(η)(Cw − C∞) + C∞ − C∞),

= −k1ϕ(η)(Cw − C∞). (4.29)

Using (4.27)-(4.29) in the right side of concentration equation,

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k1(C − C∞) = DBϕ

′′(η)(Cw − C∞)
B

νf
+
DT

T∞
g′′(η)

(Tw − T∞)
B

νf
− k1ϕ(η)(Cw − C∞).

Therefore the dimensionless form of (4.4) becomes:

−Bf(η)ϕ′(η)(Cw − C∞) = DBϕ
′′(η)(Cw − C∞)

B

vf
+
DT

T∞
g′′(η)(Tw − T∞)

B

vf
−k1ϕ(η)(Cw − C∞).

−f(η)ϕ′(η) = DBϕ
′′(η)

1

vf
+
DT

T∞
g′′(η)

(Tw − T∞)

(Cw − C∞)

1

vf
− k1

B
ϕ(η).
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Multiplying each term by
νf
DB

− νf
DB

f(η)ϕ′(η) = ϕ′′(η) +
DT

DBT∞
g′′(η)

(Tw − T∞)

(Cw − C∞)
− k1νf
BDB

ϕ(η).

Hence the required equation of concentration is

ϕ′′(η) + Scϕ
′(η)f(η) +

Nt

Nb

g′′(η)−K1ϕ(η) = 0. (4.30)

Now for converting the extended associated boundary conditions into the dimen-

sionless form, the following steps have been implemented as:

u→ Ue, at y →∞,

⇒ Bxf ′(η)→ Ax, at η = 0,

⇒ Bx

Bx
f ′(η)→ Ax

Bx
, at η = 0,

⇒ f ′(0)→ A

B
,

⇒ f ′(0)→ E.

The final non-dimensional form of the governing equation is:

f ′′′(1 + λf ′′)− φ1

(
f ′2 − ff ′′ + M

φ2

(E − f ′) sin2 ω

)
− 1

K
(E − f ′) = 0, (4.31)

g′′
(
K0 +

4

3
R

)
+ φ3Pr

(
fg′ + f ′′2

Ec
φ4

+ f ′′3
λEc
2φ4

+Nbϕ
′g′ +Ntg

′2
)

+MEcPr(f
′ − E)2 sin2 ω = 0, (4.32)

ϕ′′(η) + Scϕ
′(η)f(η) +

Nt

Nb

g′′(η)−K1ϕ(η) = 0. (4.33)

The transformed boundary conditions (4.5) formulated as:

f(0) = 0, f ′(0) = 1, g(0) = 1, ϕ(0) = 1,

f ′(∞)→ E, g(∞)→ 0, ϕ(∞)→ 0.

 (4.34)
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In the above equations the dimensionless quantities are formulated as:

E = A
B
, (Stretching ratio parameter)

R = 4σ∗T 3
∞

k∗k
, (Thermal radiation parameter)

M =
xσB2

0

Uwρf
, (Magnetic parameter)

λ = Γx
√

2B3

νf
, (Non-Newtonian parameter)

Nb = DB

νf
(Cw − C∞), (Brownian motion parameter)

Nt = DT

νfT∞
, (Thermopheroesis parameter)

Ec = U2
w

(Tw−T∞)(Cp)f
, (Eckert number)

Sc =
νf
DB

, (Schmidt parameter)

K1 =
kpνf
BDB

, (Chemical reaction parameter)

The values of fluid properties 3.16 and nanoparticles volume fraction 3.33 are

identical in this Chapter.

4.2 Numerical Technique

To obtain the numerical solution for the system of ordinary differential equations

(4.31)- (4.33) subject to boundary conditions Eq. (4.34), shooting method is used.

First, the momentum equation is solved independently. Following notations have

been considered for further procedure:

f = h1

f ′ = h′1 = h2

f ′′ = h′2 = h3

f ′′′ = h′′′1 = h′′2 = h′3

Rewriting these representation with boundary conditions, we acquire the system

of first order ordinary differential equations:

h′1 = h2, h1(0) = 0,

h′2 = h3, h2(0) = 1,
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h′3 =
1

(1 + λh3)

[
φ1(h2

2 − h1h3 − E2 − M

φ2

sin2 ω(E − h2))

− 1

K
(E − h2)

]
, h3(0) = α

Differentiating with respect to α,

∂f

∂α
= h4

∂f ′

∂α
= h5

f ′′

∂α
= h6

Similarly,

h′4 = h5, h4(0) = 0

h′5 = h6, h5(0) = 0

h′6 =
1

(1 + λh3)2

[
φ1(2h2h5 − h4h3 − h1h6 − E2 − M

φ2

sin2 ω(E − h2))

− (φ1(h2
2 − h1h3 − E2 +

M

φ2

sin2ω)− 1

K
(E − h2))

]
− 1

K
(E − h2)

]
, h6(0) = 1

The above IVP has been tackled by using the RK4 method and their missing

condition is α. The Newton’s scheme is given by the following iterative scheme

α(n+1) = α(n) − (h2(η∞))− E
∂(h2(η∞−E))

∂α

,

α(n+1) = α(n) − (h2(η∞))− E
(h5(η∞))

, n = 0, 1, 2, 3...

To execute the numerical procedure, the problem domain was taken as [0, 1]. An

asymptotic convergence of the numerical results is observed by enlarging the value

of η∞. For the shooting method, the stoping criteria is defined as follows

|(h2(η∞)− E)| < ε,

where ε is a small positive real number.
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To numerically solve the coupled equations, the missing initial condition at g(0)

is β and ϕ(0) is ξ. The following representation are considered:

g = H1, g
′ = H2, ϕ = H3, ϕ

′ = H4,
∂g

∂q
= H5,

∂g′

∂q
= H6,

∂ϕ

∂q
= H7,

∂ϕ′

∂q
= H8,

∂g

∂r
= H9,

∂g′

∂r
= H10,

∂ϕ

∂r
= H11,

∂ϕ′

∂r
= H12

 (4.35)

Using these notations, we obtain a system of first order ordinary differential equa-

tions which are given below

H ′1 = H2, H1(0) = 1,

H ′2 =
1(

knf

kf
+ 4R

3

) [−φ3Pr

(
h1H2 −+h2

3

(
Ec
φ4

)
+ h3

3

(
λEc
2φ4

)

+NbH2H4 +NtH
2
2

)
− EcMPr(h2 − E)2 sin2(ω)

]
, H2(0) = β,

H ′3 = H4, H3(0) = 1,

H ′4 = −Sch1H4 +

(
Nt

Nb

)
(
knf

kf
+ 4R

3

) [−φ3Pr

(
h1H2 −+h2

3

(
Ec
φ4

)
+ h3

3(
λEc
2φ4

)
+NbH2H4 +NtH

2
2

)
− EcMPr(h2 − E)2 sin2(ω)

]
+K1H3, H4(0) = ξ,

H ′5 = H6, H5(0) = 0,

H ′6 =
1(

knf

kf
+ 4R

3

) [−φ3 {h1H6 +Nb(H6H4 +H2H8)}

+Nt(2H2H6)] , H6(0) = 1,

H ′7 = H8, H7(0) = 0,

H ′8 = −Sch1H8 +

(
Nt

Nb

)
(
knf

kf
+ 4R

3

) [−φ3 (h1H6 +Nb(H6H4 +H2H8)+

Nt(2H2H6)) +K1H7] , H8(0) = 0,

H ′9 = H10, H9(0) = 0,

H ′10 =
1(

knf

kf
+ 4R

3

) [−φ3 {h1H10 +Nb(H10H4 +H2H11)} .

+Nt(2H2H10)] , H10(0) = 0,
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H ′11 = H12, H11(0) = 0,

H ′12 = −Sch1H12 +

(
Nt

Nb

)
(
knf

kf
+ 4R

3

) [−φ3 {h1H10 +Nb(H10H4 +H2H12)+

Nt(2H2H10)}]K1H11, H12(0) = 1.

The RK4 scheme has been adopted for tackling the above initial value problem.

To get the approximate solution, the domain of the problem has been taken as

[0, η∞] instead of [0,∞), where η∞ is an appropriate finite positive real number.

The missing conditions β and ξ in the above system of equations, are to be chosen

such that

H2(η∞, β, ξ) = 0, H4(η∞, β, ξ) = 0

For the improvement of the missing condition, Newton’s method has been imple-

mented which is conducted by the following iterative scheme:

β(n+1)

ξ(n+1)

 =

β(n)

ξ(n)

−
H5 H9

H7 H11

−1 H1

H3


(β(n),ξ(n),η∞)

The following steps are involved for the accomplishment of the shooting method.

1. Choice of the guesses β = β(0) and ξ = ξ(0).

2. Choice of a positive small number ε. If max(|H1(η∞)|, |H3(η∞)|) < ε, come

to end the procedure or else go to 3.

3. Compute the β(n+1) and ξ(n+1), n = 0, 1, 2, 3....

4. Repeat 1 and 2 until the values of β and ξ are within the specified degree of

accuracy.
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4.3 Graphical Results

The aim of this section is to analyze the numerical results of velocity, temperature

and concentration profile with the help of graphs and table by using different

parameters.

4.3.1 Skin Friction Coefficient, Nusselt Number and Sher-

wood Number

Pr R Sc Nt M −(f ′′(0) + λ
2
f ′′2(0)) −g′(0) −ϕ′(0)

6.2 0.5 10 0.1 0.1 0.7774 1.1585 2.9579

4 0.7774 1.0064 2.9930

7 0.7774 1.1922 2.9546

9 0.7774 1.2450 2.9610

0.0 0.7774 1.2622 2.9738

1.0 0.7774 1.0449 2.9824

1.5 0.7774 0.9477 3.0104

0.2 0.7774 1.4731 -0.1632

0.3 0.7774 1.4650 -0.1203

0.4 0.7774 1.4566 -0.0753

0.2 0.7774 0.9997 2.8203

0.3 0.7774 0.8677 2.8105

0.2 0.8171 1.1399 2.9350

0.3 0.8545 1.1222 2.9133

Table 4.1: Computed numerical data of Sherwood number, skin friction coef-
ficient and Nusselt number for K = 2, λ = 0.3, φ1 = φ2 = φ4 = 0.1, φ3 = 1,

K1 = 0.5, Nb = 0.1, ω = π
3 and E = 0.01.

Table 4.1 describes the computed numerical results of Cf , Nux and Sh using dif-

ferent values of physical parameters given in the table. The skin friction coefficient
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is f ′′(0) + λ
2
f ′′2(0), Nusselt number is −g′(0) and the Sherwood number is −ϕ′(0).

By altering the diverse parameters the values of skin friction coefficient, Nusselt

parameter and Sherwood number changes. As given in table, the skin friction co-

efficient gradually depressed by enhancing values of magnetic number. However,

for Prandtl number, Schmidt number, thermophoresis parameter, and thermal ra-

diation parameter no change has been observed for skin friction coefficient. For

the local Nusselt number diminish behaviour have been shown for various phys-

ical parameters, but opposite trend is noticed for growth of Sherwood number

and Prandtl number reduces against physical parameters while in case of thermal

radiation parameter Sherwood number slightly escalates.

4.3.2 Influence of Stretching Ratio Parameter E

Figure 4.2 shows the impact of stretching ratio parameter on the velocity param-

eter. It can be seen from the curve that the velocity profile decreases for boosting

values of E. Actually, the mounting values of E induces more pressure on the

flow as a result, the non-dimensional velocity profile reduces. To view the effect of

velocity ratio parameter on the dimensionless temperature profile Figure 4.3 is pre-

sented. Practically it is perceived that by escalating the amount of the stretching

ratio parameter E temperature profile increases.

4.3.3 Influence of Inclined Angle ω

Figure 4.4 reflects the effect of inclination angle ω of magnetic field on the velocity

field. It is noticed that, physically an increase in the inclination angle actually

increases the Lorentz force which is friction forces thus correspondingly that de-

creases the velocity profile. Figure 4.5 is displayed temperature distributions for

the boosting values of ω. Physically by increasing the inclination angle we are

increase the Lorentz force which generate more heat and thus increase the tem-

perature profile.
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4.3.4 Influence of Non-Newtonian Williamson Parameter

λ

Figure 4.6 stipulates the influence of non-Newtonian Williamson parameter on the

velocity profile. It is portrayed that the velocity profile decrease by increasing the

values of λ, which attains the physical significance of non-Newtonian Williamson

fluids having larger λ that can be selected to govern the heat transfer rate.

4.3.5 Influence of Magnetic Parameter M

Figure 4.7 depicts the effect of magnetic parameter M on the velocity field. That

employs viscous drag force on the flow which results in the deceleration of mo-

mentum, therefore with the increment of M the velocity boundary layer thickness

increases. Velocity profile stipulated that with the increasing values of M the

velocity increases.

4.3.6 Influence of Nanoparticles Volume Fraction φ1

Figure 4.8 shows the impact of φ1 on velocity profile of different volume fractions.

According to this figure, in volume fraction, velocity distribution decreases with

an increase in φ1. Due to accelerating amount of φ1, the motion of particles

will be more intense and the molecular force will be reduced. Therefore, fluid

movement becomes easier. Hence, it is analyzed that an rise in nanoparticles

volume fraction, fall in velocity profile. Graph describe the physical behaviour

of the nanofluid. This is due to the fact that the velocity of the nanofluid is

reciprocally proportional to the size of fluid particles.

4.3.7 Influence of Porosity Parameter K

Figure 4.9 demonstrates the variation of porosity parameter K, with in the bound-

ary layer. It is found that increasing the values of K fluid velocity increases in
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the boundary layer. Physically, the permeability reduces resistance of the porous

medium against the flow which tend to increase the velocity of fluid. Figure 4.10

illustrates the impact of K on the temperature field. It is observed that by increas-

ing the variation of K causes thickness of thermal boundary layer in dimensionless

distribution of temperature. The similar behaviour of concentration distribution

is noticed for the variation of K in Figure 4.11.

4.3.8 Influence of Brownian Motion Parameter Nb

Figure 4.12 depicts that rise in the Nb enhances the dimensionless temperature

of fluid. Physically Brownian motion parameter associated with movement of the

fluid nanoparticles. The fluid particles of kinetic energy accelerates with mounting

alteration of Nb, so in this case temperature distribution of fluid escalates. Figure

4.13 is drawn to analyze the relationship between Brownian motion parameter and

dimensionless concentration profile, which clearly proves the physical nature of Nb

by enlargement of numerical values causes to reduce the concentration profile.

4.3.9 Influence of Thermophoresis Parameter Nt

Figures 4.14 and 4.15, it is clear that the dimensionless temperature and concen-

tration increase with the gain in thermophoresis parameter Nt. Thermophoresis

parameter assists to improve the thickness of the boundary layers of tempera-

ture and concentration. As a consequence, both profiles are raised. It is also

present that the increasing in the temperature and concentration fields is high in

nanofluid. Generally, thermophoresis is a mass transfer phenomena in which move-

ment of small particles diminish thermal gradient. It causes the small particles to

remain on the stretching surfaces.
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4.3.10 Influence of Eckert Number Ec

Figure 4.16 shows a behaviour of the Eckert number Ec is given, that illuminates

the reaction of the temperature area for the viscous dissipation and Joule heat-

ing circumstance. It is predominant to kept in mind that the appearance of heat

dissipation is likely to lead to an increment of both the thickness of the ther-

mal boundary layer and the temperature field. Physically, the implementation of

convective heat is build up and then consequences in extent the thermal coating.

Figure 4.17 is presented for different values of Ec against the concentration profile.

For increasing values of Eckert number, it is observed that the concentration field

declined.

4.3.11 Influence of Prandtl Number Pr

Figure 4.18 is sketched to visualize the variation in the dimensionless temperature

profile for various values of Pr. The graph shows that the temperature decreases

as the Prandtl number alteration rise at a fixed g value. This is attributed to

the reason that a greater amount of Prandtl fluid has comparatively poor thermal

conductivity, which lowers the conduction and hence the thickness of the thermal

boundary layer and as a result, the temperature decelerate. Greater Prandtl num-

ber is to raise the rate of heat transfer at the surface as the temperature gradient

at the surface increases.

4.3.12 Influence of Thermal Radiation Parameter R

Figure 4.19 elucidates the impact of thermal radiation parameter R on the temper-

ature field. The dimensionless temperature profile and the thermal boundary layer

thickness increase gradually with an increase in the values of the thermal radia-

tion parameter R. Physically, it strengthen the fact that more heat is produced

due to the radiation process which in response increases both the temperature

distribution as well as the thermal boundary layer thickness.
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4.3.13 Influence of Schmidt Parameter Sc

Figure 4.20 portrays the effect on concentration distribution over distinct values

of Sc. The behaviour of Schmidt parameter against dimensionless concentration

profile is decreased. Physically it attributes an inverse relation of mass diffusivity

with Sc. The boosting numerical values of Schmidt number stipulated low mass

diffusion and the concentration boundary layer thickness is reduced.
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Figure 4.2: The impact of E on velocity profile is plotted against η.
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Figure 4.3: The impact of E on temperature profile is plotted against η.
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Figure 4.4: The impact of ω on velocity profile is plotted against η.
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Figure 4.5: The impact of ω on temperature profile is plotted against η.
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Figure 4.6: The impact of λ on velocity profile is plotted against η.
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Figure 4.7: The impact of on M velocity profile is plotted against η.
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Figure 4.8: The impact of φ1 on velocity profile is plotted against η.
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Figure 4.9: The impact of K on velocity profile is plotted against η.
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Figure 4.10: The impact of K on temperature field is plotted against η.
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Figure 4.11: The impact of K concentration field is plotted against η.
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Figure 4.12: The impact of Nb temperature field is plotted against η.
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Figure 4.13: The impact of Nb concentration profile is plotted against η.
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Figure 4.14: The impact of Nt on temperature field is plotted against η.
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Figure 4.15: The impact of Nt concentration profile is plotted against η.
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Figure 4.16: The impact of Ec on temperature field is plotted against η.
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Figure 4.17: The impact of Ec on concentration profile is plotted against η.
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Figure 4.18: The impact of Pr on temperature field is plotted against η.
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Figure 4.19: The impact of R on temperature field is plotted against η.
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Figure 4.20: The impact of Sc on concentration gradient profile is plotted
against η.



Chapter 5

Conclusion

In this thesis, a two dimensional incompressible and steady MHD stagnation point

flow with the effect of thermal radiations, and inclined magnetic field with Joule

heating is studied in an enclosure of stretching surface.

In this study, the work of Shawky et al. [25] is reviewed and extended with the

concept of MHD stagnation point flow with effect of thermal radiations, stretching

ratio parameter and inclined magnetic field with Joule heating to assimilate the

momentum and energy equation. The influence of several physical parameters on

velocity, temperature and concentration profiles is discussed graphically.

The skin fraction coefficient, Nusselt number and Sherwood number are investi-

gated through table for the appropriate rate of the parameters using MATLAB.

From the current study that has been numerically analyzed the following worthy

points can be concluded:

• Increasing the stretching ratio or velocity ratio parameter, temperature pro-

file increases but the opposite trend is noticed for the dimensionless velocity

field.

• The Eckert number accelerates the nature of temperature of nanofluid and

thickness of thermal boundary layer extent. But the concentration profile

decelerate by escalating the alteration of Eckert number.

91
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• Raised up of thermal radiation has great influence on the maximum temper-

ature gradient field and thermal boundary layer.

• Boosting value of inclined angle of magnetic field in response the temperature

distribution increases while reverse behaviour is observed for velocity profile.

• Uprising the values of non-Newtonian Williamson parameter has inverse re-

lation for non dimensional velocity of fluid.

• The velocity, temperature and concentration profiles escalate as the porosity

parameter increases.

• Temperature distribution reduces by the enlargement of Prandtl number.

• Velocity of fluid field escalates as the magnetic parameter values increases

and fall for various values of nanoparticles volume fraction.

• Brownian motion parameter enhances the temperature profile but opposing

effect detected for dimensionless concentration field.

• The higher estimation of thermophoresis parameter tend to rise both the be-

haviour of dimensionless nanoparticles concentration and temperature pro-

files.

• The nanoparticles concentration profile declined for distinct values of Schmidt

number.

5.1 Forthcoming Implementation

The study carried out in this thesis opens many gateways to new and innovative

research directions, for example, the fluid model of Jeffery, Tangent hyperbolic

nanofluid and Burger can be analyzed.

• It can also be analyzed the fluid by utilizing the various geometries as chan-

nel, cone, cylinder, wedge and squeezing flow etc.
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• The problem can be developed by different physical parameters like Weisen-

berg number, Biot number, nth order chemical reaction parameter by as-

suming dust particles and suction or injection parameter.
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